72 research outputs found

    Fracture micromechanics of polymer materials

    No full text

    Stable Delay of Microstrip Line with Side Grounded Conductors

    No full text

    Stable Delay of Microstrip Line with Side Grounded Conductors

    No full text
    Characteristics of transmission lines are addressed. Wave impedance and per-unit-length delay of the microstrip structure with grounded side conductors on three layers are calculated under different parameters of the structure. A line which provides the desired value of wave impedance and constant per-unit-length delay, at the expense of correction of the gaps on different layers, is proposed

    Irradiation effects in beryllium exposed to high energy protons of the NuMI neutrino source

    No full text
    A beryllium primary vacuum-to-air beam ‘window’ of the “Neutrinos at the Main Injector” (NuMI) beamline at Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, USA, has been irradiated by 120 GeV protons over 7 years, with a maximum integrated fluence at the window centre of 2.06 1022 p/cm2 corresponding to a radiation damage level of 0.48 dpa. The proton beam is pulsed at 0.5 Hz leading to an instantaneous temperature rise of 40 °C per pulse. The window is cooled by natural convection and is estimated to operate at an average of around 50 °C. The microstructure of this irradiated material was investigated by SEM/EBSD and Atom Probe Tomography, and compared to that of unirradiated regions of the beam window and that of stock material of the same PF-60 grade. Microstructural investigations revealed a highly inhomogeneous distribution of impurity elements in both unirradiated and irradiated conditions. Impurities were mainly localised in precipitates, and as segregations at grain boundary and dislocation lines. Low levels of Fe, Cu, Ni, C and O were also found to be homogeneously distributed in the beryllium matrix. In the irradiated materials, up to 440 appm of Li, derived from transmutation of beryllium was homogeneously distributed in solution in the beryllium matrix

    Radiation induced hardening of beryllium during low temperature He implantation

    No full text
    The effect of ion irradiation on evolution of microstructure and hardening of beryllium with different impurity levels was investigated using TEM and nanoindentation. High purity S-65 grade and less-pure S-200-F grade were implanted by helium ions at temperatures of 50°C and 200°C. 11 different energies were used, so as to create a quasi-homogeneous 3 µm irradiated layer with average radiation damage of 0.1 dpa and average He content of 2000 appm. Nanoindentation experiments demonstrated that before irradiation, the S-200-F and S-65 grades have an average hardness of 3.7±0.8 GPa and 3.4±0.8 GPa correspondently. After implantation the hardness of both grades increased by about 60% for the 200°C irradiation and 100% for the 50°C irradiation. The crystallographic analysis of indented grains demonstrated that in the as-received materials the hardness is about 2.5 times higher when the indentation direction is close to the [0001] c-axis of beryllium compared to indentation perpendicular to [0001]. Hardness anisotropy significantly decreased after irradiation: the “soft orientation” was most sensitive to irradiation-induced hardening, with hardness increasing by about 140% after irradiation at 50°C and 100% after irradiation at 200°C, compared to about 15 - 20% for the “hard” orientation at both irradiation temperatures. The higher purity grade had smaller increase of the “soft orientation” hardness: 2.5±0.3 GPa for the S-65 and 2.9±0.2 GPa for the S-200-F. At both temperatures in both grades, under TEM investigation the radiation damage appears as “black dots” which are likely to be small dislocation loops with the number density of ~ 1022 m−3. No bubbles were observed by TEM inside grains and at grain boundaries. Analysis of the possible hardening contribution demonstrated that the observed “black dots” could be responsible for up to half of the measured hardening, while the rest of the hardening should originate from helium bubbles with the size below the TEM resolution (at or below 1.5 nm)
    corecore