53 research outputs found

    Cell size sets the diameter of the budding yeast contractile ring.

    No full text
    The formation and maintenance of subcellular structures and organelles with a well-defined size is a key requirement for cell function, yet our understanding of the underlying size control mechanisms is limited. While budding yeast cell polarization and subsequent assembly of a septin ring at the site of bud formation has been successfully used as a model for biological self-assembly processes, the mechanisms that set the size of the septin ring at the bud neck are unknown. Here, we use live-cell imaging and genetic manipulation of cell volume to show that the septin ring diameter increases with cell volume. This cell-volume-dependence largely accounts for modulations of ring size due to changes in ploidy and genetic manipulation of cell polarization. Our findings suggest that the ring diameter is set through the dynamic interplay of septin recruitment and Cdc42 polarization, establishing it as a model for size homeostasis of self-assembling organelles. Budding yeast cell polarization is known to self-assemble, but it is still not clear what controls the size of the resulting septin ring. Here the authors show that the septin ring diameter is set by cell volume, ensuring that larger cells have larger rings

    An asymmetric flow-focusing droplet generator promotes rapid mixing of reagents.

    No full text
    Nowadays droplet microfluidics is widely used to perform high throughput assays and for the synthesis of micro- and nanoparticles. These applications usually require packaging several reagents into droplets and their mixing to start a biochemical reaction. For rapid mixing microfluidic devices usually require additional functional elements that make their designs more complex. Here we perform a series of 2D numerical simulations, followed by experimental studies, and introduce a novel asymmetric flow-focusing droplet generator, which enhances mixing during droplet formation due to a 2D or 3D asymmetric vortex, located in the droplet formation area of the microfluidic device. Our results suggest that 2D numerical simulations can be used for qualitative analysis of two-phase flows and droplet generation process in quasi-two-dimensional devices, while the relative simplicity of such simulations allows them to be easily applied to fairly complicated microfluidic geometries. Mixing inside droplets formed in the asymmetric generator occurs up to six times faster than in a conventional symmetric one. The best mixing efficiency is achieved in a specific range of droplet volumes, which can be changed by scaling the geometry of the device. Thus, the droplet generator suggested here can significantly simplify designs of microfluidic devices because it enables both the droplet formation and fast mixing of the reagents within droplets. Moreover, it can be used to precisely estimate reaction kinetics

    Secondary ?-radiation in shielding media

    No full text

    Dissolution and mixing of flavin mononucleotide in microfluidic chips for bioassay

    Get PDF
    Dissolution and mixing of flavin mononucleotide (FMN), which activates a luminescent reaction, were considered in various designs of microfluidic chip for pollution analysis of liquid samples. The aim was to determine the velocity mode of fluid flow ensured the uniform distribution of the FMN in the reaction chamber. Simulation of concentration distribution of FMN in various designs of microfluidic chips was conducted. It was shown that the passive mixing techniques based on the constant flow rate didn’t provide mixing of FMN in acceptable time (3 seconds). The most efficient mixing was achieved using variable flow rate with a gradually increasing frequency of oscillation

    Altered expression response upon repeated gene repression in single yeast cells.

    No full text
    Cells must continuously adjust to changing environments and, thus, have evolved mechanisms allowing them to respond to repeated stimuli. While faster gene induction upon a repeated stimulus is known as reinduction memory, responses to repeated repression have been less studied so far. Here, we studied gene repression across repeated carbon source shifts in over 1,500 single Saccharomyces cerevisiae cells. By monitoring the expression of a carbon source-responsive gene, galactokinase 1 (Gal1), and fitting a mathematical model to the single-cell data, we observed a faster response upon repeated repressions at the population level. Exploiting our single-cell data and quantitative modeling approach, we discovered that the faster response is mediated by a shortened repression response delay, the estimated time between carbon source shift and Gal1 protein production termination. Interestingly, we can exclude two alternative hypotheses, i) stronger dilution because of e.g., increased proliferation, and ii) a larger fraction of repressing cells upon repeated repressions. Collectively, our study provides a quantitative description of repression kinetics in single cells and allows us to pinpoint potential mechanisms underlying a faster response upon repeated repression. The computational results of our study can serve as the starting point for experimental follow-up studies

    Droplet microfluidic device for chemoenzymatic sensing.

    No full text
    The rapid detection of pollutants in water can be performed with enzymatic probes, the catalytic light-emitting activity of which decreases in the presence of many types of pollutants. Herein, we present a microfluidic system for continuous chemoenzymatic biosensing that generates emulsion droplets containing two enzymes of the bacterial bioluminescent system (luciferase and NAD(P)H:FMN-oxidoreductase) with substrates required for the reaction. The developed chip generates "water-in-oil" emulsion droplets with a volume of 0.1 μL and a frequency of up to 12 drops per minute as well as provides the efficient mixing of reagents in droplets and their distancing. The bioluminescent signal from each individual droplet was measured by a photomultiplier tube with a signal-to-noise ratio of up to 3000/1. The intensity of the luminescence depended on the concentration of the copper sulfate with the limit of its detection of 5 μM. It was shown that bioluminescent enzymatic reactions could be carried out in droplet reactors in dispersed streams. The parameters and limitations required for the bioluminescent reaction to proceed were also studied. Hereby, chemoenzymatic sensing capabilities powered by a droplet microfluidics manipulation technique may serve as the basis for early-warning online water pollution systems
    corecore