9 research outputs found

    Modeling and Complex Analysis of the Topology Parameters of Ventilation Networks When Ensuring Fire Safety While Developing Coal and Gas Deposits

    Get PDF
    Underground mining, including underground coal mining, is accompanied by accidents and fire hazards that pose a threat to the life safety of miners. The fire hazard increases with an increase in the mining depth. Currently, most accidents in coal mines are mine fires. The cost of eliminating mine fires is 80–95% of the cost of eliminating all accidents occurring at mining enterprises. Therefore, the problem of developing a new methodology for modeling the ventilation network parameters of the mine to increase the reliability of controlling the aerogas mode at the excavation site is very relevant. The comprehensive analysis and assessment of gas-dynamic processes in coalmines under study were carried out using the methods of probability theory and mathematical statistics. Spatial data were processed using spline interpolation in “gnuplot”. As a result, a generalized expression for the transfer functions of coalmine objects, taking into account delays, was developed, including the description of dynamic properties of mining sites under various operating modes. The principal possibility of using a graphical method for estimating additional parameters of the sections of the ventilation system branches has been proved due to the alignment of their profiles at an equivalent distance relative to an arbitrary analogue. The improved method of spatial modeling was used to determine the gas-dynamic characteristics through additive gas-dynamic processes. The studies have been carried out and the method for managing the process of changing connections between devices (controllers–switches) of the technical system was developed in order to obtain greater reliability for safe mining. In subsequent studies, there is an issue of more detailed clarification of the peculiarities concerning the interrelations between the studied parameters in several projections of the response space

    Study of Melting Methods by Electric Resistance Welding of Rails

    Get PDF
    An analysis of the results of rail operation shows that up to a third of all rail breaks in the railway line and up to 12.9% of all withdrawn acute defective rails are associated with welded joints. This is largely explained by the formation of structures with martensite sections in the welded joints of rails and the formation of burns. This work presents the results of studying welded joints, obtained under three welding modes (continuous flash welding, pulsating flash welding and combined flash welding). The conducted studies have shown that the flash welding mode significantly influences both the cooling rate value and the very nature of the thermal cycle of the welded joint as a whole. Changes in the cooling rate under different modes exert a significant influence on the structure and properties of the weld. Resistance welding of rails from the steel grade E76HGF by pulsating flash welding can result in the appearance of needle martensite areas, which is the reason for increased embrittlement of the weld and a decrease in its properties. The conducted field experiments have reliably shown that in the conditions of the combined welding mode it becomes possible to avoid these problems. Moreover, a slight increase in the mechanical properties of the weld in the range of 2–4% has been experimentally recorded, and the destructive load of the welded joint of the rail increases by 2–3% at high values of the bending deflection. In turn, these factors allow a significant reduction in the number of cases of rail welded-joint failures in real conditions of their operation

    X-ray Diffraction Phase Analysis of Changes in the Lattice of Pervouralsk Quartzite upon Heating

    No full text
    At present, quartzite is widely used across many industries. The properties of quartzite significantly affect the technology used during the preparation of the raw materials as well as the technology used for manufacturing the final product, which may be intended for further operation at different temperatures. The purpose of the study was to create a scheme for the transformation of quartzite that would describe the changes in the parameters of its lattice parameter upon heating and would offer guidance regarding the drying technology and technology required to obtain tridymite. A Bruker D8 Advance diffractometer was used to study changes in the phase composition of quartzite at the temperatures of 200, 400, 600, 879, 1000, 1200, 1470, and 1550 °C. A detailed scheme of transformations of PKMVI-1 quartzite with a SiO2 content of at least 97.5% at normal pressure was proposed for crystalline modifications formed during its heating. As a result of this research, the changes in the parameters of the lattice parameter—such as the average interplanar distance davg, the volume of the unit cell Vavg, the density of the unit cell Davg, and the molecular weight Mavg—were established

    The Technology of Using Liquid Glass Mixture Waste for Reducing the Harmful Environmental Impact

    No full text
    The spent liquid glass mixture, which is widely used in foundries as a binder after knocking out of moldings, contains pieces of different sizes and strengths, and there is a strong silicate film on the sand grains themselves. The proposed regeneration plants, which provide for the removal of the silicate film by scrubbing, have low productivity and lead to abrasion of the grains themselves. For this reason, the knocked-out mixture is taken to the dump. As a result of the study of the state of the spent liquid glass mixture in the dump, it was found that, in the spent mixture that had lain for 8–10 years, under prolonged exposure to atmospheric precipitation at plus and minus temperatures, part of the silicate film dissolves and almost all monolithic pieces are destroyed. Further use of hydraulic regeneration allows us to reduce the film thickness and thereby reduce the percentage of liquid glass from 5–5.5% to 0.8–1.2%. This made it possible to select the composition of the molding sand for an automatic line, using the AlpHaset-process, which consists of 22–29% of liquid glass mixture from a dump, 65–72% of liquid glass, 5.5% of liquid glass, and a hardener in the amount of 0.55%

    Investigation of the Solid-Phase Joint of VT-14 Titanium Alloy with 12KH18N10T Stainless Steel Obtained by Diffusion Welding through Intermediate Layers

    No full text
    This paper describes the technological process of manufacturing bimetallic billets, which are capable of operating at high pressures, high temperatures, and in corrosive environments, from VT-14 titanium alloy and 12KH18N10T stainless steel. To obtain a joint with a strength of at least 350 MPa, the diffusion welding method was used, which makes it possible to obtain equal-strength joints using dissimilar materials. The connection of VT-14 titanium alloy with 12KH18N10T stainless steel after obtaining bimetallic billets with the desired properties was investigated. We studied the welded VT-14 and 12KH18N10T joint obtained by diffusion welding through intermediate spacers of niobium Nb (NbStrip-1) and copper Cu (M1). On the basis of our investigations, the optimum welding modes are as follows: welding temperature: 1137 K; welding pressure: 18 MPa; welding time: 1200 s. Mechanical tests, tightness tests, and metallographic, factographic, and micro-X-ray structural studies were carried out, the results of which indicate the effectiveness of the proposed approach

    Influence of Moisture in Quartzite on the Lining Properties and Efficiency of Industrial-Frequency Induction Crucible Furnaces

    No full text
    The main purpose of industrial frequency induction crucible smelters (IGM) is the smelting of synthetic cast iron, using metal filling scrap in the amount of 30–35%, at a temperature not exceeding 1450 OZ C. The basis of the lining used is quartzite, which undergoes polymorphic transformations in the pre-treatment process to form tridimite. The efficiency of using these furnaces is significantly increased when using a metal casting consisting of a single steel scrap, but for this purpose, the melting mode has to be raised to 1550–1600 °C, which will reduce the resistance of the lining. The structural transformation of quartzite is strongly influenced by the state of water in it. In this work, studies have been carried out for changes in the water condition in the quartzite of the brand PCMVI-3 under the action of temperatures of 200–1550 °C. The Shimadzu XRF-1800 spectrometer established the actual chemical composition of the investigated quartzite and found that the amount of impurities in it is 0.66%. A derivative study of STA 449 F1 Jupiter found two endothermic effects. The first, at 170 °C, relates to the loss of adsorbed water. The second, at a temperature of 570 °C, passes without the loss of mass of the sample, and it is accompanied by the beginning of the process of the destruction of point defects in the form of Al-OH groupings. From a temperature of 620–630 °C, no mass changes associated with water removal were detected. The BRUKER D8 ADVANCE diffractometer investigated phase changes during the removal of moisture from the quartzite at temperatures of 200 and 800 °C and subsequent cooling and then during the heating used to sinter the lining. As a result, it has been established that the sheet in which the quartzite contains only chemically bound moisture, after sintering, turns into cristobalite and provides a more stable exposure to sudden temperature changes. This makes it possible to use up to 90% of the steel scrap in metal filling, which increases the efficiency of the melting furnace and the production of castings in general

    Study of Supercapacitors Built in the Start-Up System of the Main Diesel Locomotive

    No full text
    A successful guaranteed launch of a mainline diesel locomotive is one of the most important and urgent problems of the rolling stock operation. Improvement of the start-up system of the main diesel locomotive when using a supercapacitor allows multiple restarts of diesel locomotives, meaning that the operation of the diesel locomotive can be stopped several times without wasting fuel in idle operations. In this study, we simulated the electric starting circuit of a diesel locomotive with a block of supercapacitors using the Matlab Simulink program. The simulation results show that using only a supercapacitor in the start-up system is impossible. Even though the supercapacitor produces the required current and voltage, its operating time is extremely insufficient. Using a storage battery along with a supercapacitor in the diesel locomotive start-up system is most effective. This reduces the peak current load on the standard battery. The article suggests an effective principle for starting a mainline diesel locomotive and provides an effective circuit solution involving a supercapacitor. Based on the booster stabilizer scheme, a new scheme was modeled to study the successful launch of a diesel locomotive that has various start-up systems. Applying a supercapacitor in the start-up system of a main diesel locomotive is proposed and the results of its use are presented. In addition, this study defines the basic requirements for using a system based on a battery in conjunction with a supercapacitor. Characteristics such as the temperature range of the system are shown

    Review of Methods for Improving the Energy Efficiency of Electrified Ground Transport by Optimizing Battery Consumption

    Get PDF
    The article reviews the existing methods of increasing the energy efficiency of electric transport by analyzing and studying the methods of increasing the energy storage resource. It is grouped according to methods, approaches, and solutions. The most effective methods and ways of their implementation are identified. General methods of increasing energy efficiency, methods of increasing recuperation during braking, methods of energy-efficient energy consumption, the use of energy-saving technologies, and improving the energy efficiency of the traction drive are considered. The purpose of this work is to identify the main operating factors on the basis of a critical review of existing methods for assessing the technical condition of batteries and experimental results on the degradation of lithium-ion batteries. Using the great experience of the research group in the field of modeling, diagnostics, and forecasting of life of electric cars, as well as their intellectual management, the new theoretical and practical methods of integrated assessment of the parameters of the traction battery and state of charge, which are operated in the heavy forced regenerative regimes of electric traction, are created and proposed. A great role is played by the construction of the transport model. The development is based on physical laws that passengers and vehicle owners are unaware of. For each model there is a different area of application, and what is suitable for one object may not be suitable for another. The overview shows that there is no one-size-fits-all way to improve energy efficiency. It is necessary to make a choice among several proposed models after a thorough feasibility study
    corecore