58 research outputs found

    Risk prediction model for major adverse cardiovascular events (MACE) during hospitalization in patients with coronary heart disease based on myocardial energy metabolic substrate

    Get PDF
    BackgroundThe early attack of coronary heart disease (CHD) is very hidden, and clinical symptoms generally do not appear until cardiovascular events occur. Therefore, an innovative method is needed to judge the risk of cardiovascular events and guide clinical decision conveniently and sensitively. The purpose of this study is to find out the risk factors related to MACE during hospitalization. In order to develop and verify the prediction model of energy metabolism substrates, and establish a nomogram to predict the incidence of MACE during hospitalization and evaluate their performance.MethodsThe data were collected from the medical record data of Guang'anmen Hospital. This review study was collected the comprehensive clinical data of 5,935 adult patients hospitalized in the cardiovascular department from 2016 to 2021. The outcome index was the MACE during hospitalization. According to the occurrence of MACE during hospitalization, these data were divided into MACE group (n = 2,603) and non-MACE group (n = 425). Logistic regression was used to screen risk factors, and establish the nomogram to predict the risk of MACE during hospitalization. Calibration curve, C index and decision curve were used to evaluate the prediction model, and drawn ROC curve to find the best boundary value of risk factors.ResultsThe logistic regression model was used to establish a risk model. Univariate logistic regression model was mainly used to screen the factors significantly related to MACE during hospitalization in the training set (each variable is put into the model in turn). According to the factors with statistical significance in univariate logistic regression, five cardiac energy metabolism risk factors, including age, albumin(ALB), free fatty acid(FFA), glucose(GLU) and apolipoprotein A1(ApoA1), were finally input into the multivariate logistic regression model as the risk model, and their nomogram were drawn. The sample size of the training set was 2,120, the sample size of the validation set was 908. The C index of the training set is 0.655 [0.621,0.689], and the C index of the validation set was 0.674 [0.623,0.724]. The calibration curve and clinical decision curve show that the model performs well. The ROC curve was used to establish the best boundary value of the five risk factors, which could quantitatively present the changes of cardiac energy metabolism substrate, and finally achieved prediction of MACE during hospitalization conveniently and sensitively.ConclusionAge, albumin, free fatty acid, glucose and apolipoprotein A1 are independent factors of CHD in MACE during hospitalization. The nomogram based on the above factors of myocardial energy metabolism substrate provides prognosis prediction accurately

    Label GM-PHD Filter Based on Threshold Separation Clustering

    No full text
    Gaussian mixture probability hypothesis density (GM-PHD) filtering based on random finite set (RFS) is an effective method to deal with multi-target tracking (MTT). However, the traditional GM-PHD filter cannot form a continuous track in the tracking process, and it is easy to produce a large number of redundant invalid likelihood functions in a dense clutter environment, which reduces the computational efficiency and affects the update result of target probability hypothesis density, resulting in excessive tracking error. Therefore, based on the GM-PHD filter framework, the target state space is extended to a higher dimension. By adding a label set, each Gaussian component is assigned a label, and the label is merged in the pruning and merging step to increase the merging threshold to reduce the Gaussian component generated by dense clutter update, which reduces the computation in the next prediction and update. After pruning and merging, the Gaussian components are further clustered and optimized by threshold separation clustering, thus as to improve the tracking performance of the filter and finally realizing the accurate formation of multi-target tracks in a dense clutter environment. Simulation results show that the proposed algorithm can form a continuous and reliable track in dense clutter environment and has good tracking performance and computational efficiency

    Geochemistry of sandstones and shales from the Ecca Group, Karoo Supergroup, in the Eastern Cape Province of South Africa: Implications for provenance, weathering and tectonic setting

    No full text
    Geochemical compositions of twenty-four sandstone and shale samples from the Ecca Group were analysed to decipher their provenance, paleoweathering conditions and tectonic setting. The shales have high Fe2O3, K2O, TiO2, Ce, Cu, Ga, La, Nb, Nd, Rb, Sc, Sr, Th and Y content more than the sandstones, whereas, sandstones are higher in SiO2, Hf and Zr than the shales. The positive correlations of Al2O3 with other elements as well as the abundance of Ba, Ce, Th, Rb, Zn and Zr suggest that these elements are primarily controlled by the dominant clay minerals. Tectonic discrimination diagrams revealed that the sandstones and shales are mostly of quartzose sedimentary provenance, suggesting that they were derived from a cratonic interior or recycled orogen. The binary plots of TiO2 versus Ni, TiO2 against Zr and La/Th versus Hf as well as the ternary diagrams of V-Ni-Th*10 indicate that the shales and sandstones were derived from felsic igneous rocks. A-CN-K (Al2O3-CaO-K2O) ternary diagram and indices of weathering (CIA, CIW and PIS) suggest that the granitic source rocks underwent moderate to high degree of chemical weathering. The CIA values range between 24.41% and 83.76%, indicating low to high weathering conditions. The CIW values for the studied sandstones and shales range from 25.90 to 96.25%, suggesting moderate to high intensive chemical weathering. ICV values for the sandstones and shales vary from 0.71 to 3.6 (averaging 1.20) and 0.41 to 1.05 (averaging 0.82), respectively. The k2O/Na2O ratios for the studied samples vary from 0.71 to 8.29, which reveal moderate to high maturity. The plot of CIA against ICV shows that most of the shales are geochemically mature and were derived from both weak and intensively weathered source rocks. The tectonic setting discrimination diagrams support passive-active continental margin setting of the provenance

    Diagenesis and Reservoir Properties of the Permian Ecca Group Sandstones and Mudrocks in the Eastern Cape Province, South Africa

    No full text
    Diagenesis is one of the most important factors that affects reservoir rock property. Despite the fact that published data gives a vast amount of information on the geology, sedimentology, and lithostratigraphy of the Ecca Group in the Karoo Basin of South Africa, little is known about the diagenesis of the potentially feasible or economically viable sandstones and mudrocks of the Ecca Group. This study aims to provide an account of the diagenesis of sandstones and mudstones from the Ecca Group. Twenty-five diagenetic textures and structures were identified and grouped into three stages that include early diagenesis, burial diagenesis and uplift-related diagenesis. Clay minerals are the most common cementing materials in the sandstones. Smectite, kaolinite, and illite are the major clay minerals that act as pore lining rims and pore-filling materials. A part of the clay minerals and detrital grains was strongly replaced by calcite. Calcite precipitates locally in the pore spaces and partially or completely replaced clay matrix, feldspar, and quartz grains at or around their margins. Precipitation of cements and formation of pyrite and authigenic minerals occurred during the early diagenetic stage. This process was followed by lithification and compaction which brought about an increase in tightness of grain packing, loss of pore spaces, and thinning of bedding thickness due to overloading of sediments and selective dissolution of the framework grains. Mineral overgrowths, mineral replacement, clay-mineral transformation, dissolution, deformation, and pressure solution occurred during burial diagenetic stage. After rocks were uplifted, weathered and unroofed by erosion, this resulted in decementation and oxidation of iron-rich minerals. The rocks of the Ecca Group were subjected to moderate-intense mechanical and chemical compaction during their progressive burial. Intergranular pores, secondary dissolution, and fractured pores are well developed in the sediments of the Ecca Group. The presence of fractured and dissolution pores tend to enhance reservoir quality. However, the isolated nature of the pore linkage makes them unfavorable producers of hydrocarbons, which at best would require stimulation. The understanding of the space and time distribution of diagenetic processes in these rocks will allow the development of predictive models of their reservoir quality, which may contribute to the reduction of risks involved in hydrocarbon (oil and gas) exploration

    Concentration and Distribution of Nuclei and Plastids in Xylem Cells in Cunninghamia lanceolata and Aquilaria sinensis

    No full text
    After programmed cell death (PCD), heartwood formation, storage, and processing, wood DNA degradation occurs to varying degrees. The concentration and distribution of nuclei and plastids in xylem cells of Cunninghamia lanceolata and Aquilaria sinensis, treated under different conditions of processing and storing, were studied by analyzing the distribution frequency, area, and signal intensity, in specimens that had been stained with aceto-carmine, DAPI, and I2-KI. Most of the nuclei and plastids were present in the ray cells, and a small quantity of nuclei and plastids were present in the axial parenchyma cells. There was an indication that the concentration of the remaining nuclei and plastids in the xylem cells was mainly affected by the xylem heartwood formation, storage time, and temperature. The nuclei and plastids content of the sapwood was greater than that of the heartwood. However, the nuclei and plastids content of the fresh wood was greater than that of the processed and stored wood. An estimation of the quantity of nuclei and plastids using staining methods could provide a direct basis for the appropriate selection of a procedure for DNA extraction

    Modal composition and tectonic provenance of the sandstones of Ecca Group, Karoo Supergroup in the Eastern Cape Province, South Africa

    No full text
    Petrography of the sandstones of Ecca Group, Karoo Supergroup in the Eastern Cape Province of South Africa have been investigated on composition, provenance and influence of weathering conditions. Petrographic studies based on quantitative analysis of the detrital minerals revealed that the sandstones are composed mostly of quartz, feldspar and lithic fragments of metamorphic and sedimentary rocks. The sandstones have an average framework composition of 24.3% quartz, 19.3% feldspar, 26.1% rock fragments, and 81.33% of the quartz grains are monocrystalline. These sandstones are generally very fine to fine grained, moderate to well sorted, and subangular to subrounded in shape. In addition, they are compositionally immature and can be classified as feldspathic wacke and lithic wacke. The provenance characteristics suggest the influence of plutonic and metamorphic terrains (meta-magmatic arc) as the main source rock with minor debris derived from recycled sedimentary rocks. The latter revealed that the compositional immaturity of the sandstones is a result of weathering or recycling and short transport distance. The weathering diagrams and semi-quantitative weathering index indicate that the Ecca sandstones are mostly from a plutonic source area, with climatic conditions ranging from arid to humid. The detrital modal compositions of these sandstones are related to back arc to island and continental margin arc. These results, therefore, support previous studies that infer foreland basin setting for the Karoo Basin
    • …
    corecore