14 research outputs found

    Phylogeography, population structure and evolution of coral-eating butterflyfishes (Family Chaetodontidae, genus Chaetodon, subgenus Corallochaetodon)

    Get PDF
    Aim: This study compares the phylogeography, population structure and evolution of four butterflyfish species in the Chaetodon subgenus Corallochaetodon, with two widespread species (Indian Ocean – C. trifasciatus and Pacific Ocean – C. lunulatus), and two species that are largely restricted to the Red Sea (C. austriacus) and north-western (NW) Indian Ocean (C. melapterus). Through extensive geographical coverage of these taxa, we seek to resolve patterns of genetic diversity within and between closely related butterflyfish species in order to illuminate biogeographical and evolutionary processes. Location: Red Sea, Indian Ocean and Pacific Ocean. Methods: A total of 632 individuals from 24 locations throughout the geographical ranges of all four members of the subgenus Corallochaetodon were sequenced using a 605 bp fragment (cytochrome b) of mtDNA. In addition, 10 microsatellite loci were used to assess population structure in the two widespread species. Results: Phylogenetic reconstruction indicates that the Pacific Ocean C. lunulatus diverged from the Indian Ocean C. trifasciatus approximately 3 Ma, while C. melapterus and C. austriacus comprise a cluster of shared haplotypes derived from C. trifasciatus within the last 0.75 Myr. The Pacific C. lunulatus had significant population structure at peripheral locations on the eastern edge of its range (French Polynesia, Johnston Atoll, Hawai'i), and a strong break between two ecoregions of the Hawaiian Archipelago. The Indian Ocean C. trifasciatus showed significant structure only at the Chagos Archipelago in the central Indian Ocean, and the two range-restricted species showed no population structure but evidence of recent population expansion. Main conclusions: Patterns of endemism and genetic diversity in Corallochaetodon butterflyfishes have been shaped by (1) Plio-Pleistocene sea level changes that facilitated evolutionary divergences at biogeographical barriers between Indian and Pacific Oceans, and the Indian Ocean and Red Sea, and (2) semi-permeable oceanographic and ecological barriers working on a shorter time-scale. The evolution of range-restricted species (Red Sea and NW Indian Ocean) and isolated populations (Hawai'i) at peripheral biogeographical provinces indicates that these areas are evolutionary incubators for reef fishes

    Hybridisation among butterflyfishes

    No full text
    [Extract] Hybridisation is defined as the interbreeding of individuals from two distinct populations (sensu stricto species), which are distinguishable on the basis of one or more heritable characters, following Harrison (1993). Hybrids have been recognised, based on intergrading of characteristic features from parent species, since at least the 1700's and have been documented among plants, corals, gastropods, crustaceans, insects, amphibians, reptiles, birds, mammals and fish (Barton and Hewitt, 1985; Schwenk, 1993; Bieme et al., 2003; van Oppen and Gates, 2006). At least 10% of animals and 25% of plant species are known to hybridise, although the true proportion is probably higher because hybridisation often goes unnoticed (Mallet, 2005, 2007). The fact that hybridisation is not a rare phenomenon but occurs in a considerable proportion of species, presents a significant challenge to the fundamental biological definition of a species (Barton and Hewitt, 1985; Mallet, 2005)

    The importance of juveniles in modelling growth: butterflyfish at Lizard Island

    No full text
    I established and fitted von Bertalanffy growth functions to size-at-age data for four species of chaetodontids at Lizard Island. Special emphasis on juveniles provided detailed information of the early growth period. All four species demonstrated rapid initial growth achieving an average of 92% of maximum theoretical size in the first 2thinspyears. I used various constraints of the theoretical age at length zero (t0) in an analysis of both complete data sets and data sets using only adult fish. An unconstrained value of t0 resulted in the best-fit (maximum r2) curve when juveniles were included. When excluding juveniles, it was necessary to constrain t0 to an approximate settling size to most closely represent the growth of the species

    Two new hemiurine species (Digenea : Hemiuridae) from Spratelloides robustus Ogilby (Clupeiformes : Clupeidae) off south-western Australia and records of Parahemiurus merus (Linton, 1910) from Australian and New Caledonian waters

    No full text
    Two new species of hemiurine hemiurid are described from Spratelloides robustus off Woodman Point in southern Western Australia. Hemiurus lignator n. sp. differs from its congeners by a combination of similar-sized suckers, long sinus-sac, tandem testes, relatively elongate shape and unthickened seminal vesicle wall. Parahemiurus xylokopos n. sp. differs from its congeners in a combination of its squat form, its distinctly lobed vitellarium and the proximity of the gonads to the ventral sucker. P. merus (Linton, 1910) is reported from Acanthopagrus australis, Pomatomus saltatrix and Trachinotus coppingeri off northern New South Wales, Caranx sexfasciatus, Scorpis lineolata, Siganus nebulosus, Thunnus tonggol and T. coppingeri off southern Queensland, Cephalopholis boenak and Euthynnus affinis off Heron Island, southern Great Barrier Reef, P. saltatrix off southern Western Australia and Priacanthus hamrur off New Caledonia
    corecore