2,262 research outputs found

    Azimuth axis optical alignment system Final report

    Get PDF
    Azimuth axis optical alignment system to monitor and measure attitude or angular position of remote object about azimuth axis using phase information imposed on returning beam of ligh

    Neodymium as an alternative contrast for uranium in electron microscopy

    Get PDF
    Uranyl acetate is the standard contrasting agent in electron microscopy (EM), but it is toxic and radioactive. We reasoned neodymium acetate might substitute uranyl acetate as a contrasting agent, and we find that neodymium acetate indeed can replace uranyl acetate in several routine applications. Since neodymium acetate is not toxic, not radioactive and easy to use, we foresee neodymium will replace uranyl in many EM sample preparation applications worldwide

    The clustering morphology of freely rising deformable bubbles

    Get PDF
    We investigate the clustering morphology of a swarm of freely rising deformable bubbles. A three-dimensional Vorono\"i analysis enables us to quantitatively distinguish between two typical clustering configurations: preferential clustering and a grid-like structure. The bubble data is obtained from direct numerical simulations (DNS) using the front-tracking method. It is found that the bubble deformation, represented by the aspect ratio \chi, plays a significant role in determining which type of clustering is realized: Nearly spherical bubbles with \chi <~ 1.015 form a grid-like structure, while more deformed bubbles show preferential clustering. Remarkably, this criteria for the clustering morphology holds for different diameters of the bubbles, surface tension, and viscosity of the liquid in the studied parameter regime. The mechanism of this clustering behavior is connected to the amount of vorticity generated at the bubble surfaces.Comment: 10 pages, 5 figure

    The Discrete Frenet Frame, Inflection Point Solitons And Curve Visualization with Applications to Folded Proteins

    Full text link
    We develop a transfer matrix formalism to visualize the framing of discrete piecewise linear curves in three dimensional space. Our approach is based on the concept of an intrinsically discrete curve, which enables us to more effectively describe curves that in the limit where the length of line segments vanishes approach fractal structures in lieu of continuous curves. We verify that in the case of differentiable curves the continuum limit of our discrete equation does reproduce the generalized Frenet equation. As an application we consider folded proteins, their Hausdorff dimension is known to be fractal. We explain how to employ the orientation of CβC_\beta carbons of amino acids along a protein backbone to introduce a preferred framing along the backbone. By analyzing the experimentally resolved fold geometries in the Protein Data Bank we observe that this CβC_\beta framing relates intimately to the discrete Frenet framing. We also explain how inflection points can be located in the loops, and clarify their distinctive r\^ole in determining the loop structure of foldel proteins.Comment: 14 pages 12 figure

    Distinguishing step relaxation mechanisms via pair correlation functions

    Full text link
    Theoretical predictions of coupled step motion are tested by direct STM measurement of the fluctuations of near-neighbor pairs of steps on Si(111)-root3 x root3 R30 - Al at 970K. The average magnitude of the pair-correlation function is within one standard deviation of zero, consistent with uncorrelated near-neighbor step fluctuations. The time dependence of the pair-correlation function shows no statistically significant agreement with the predicted t^1/2 growth of pair correlations via rate-limiting atomic diffusion between adjacent steps. The physical considerations governing uncorrelated step fluctuations occurring via random attachment/detachment events at the step edge are discussed.Comment: 17 pages, 4 figure

    Efficacy of lanthionine-stabilized angiotensin-(1-7) in type I and type II diabetes mouse models

    Get PDF
    Native angiotensin-(1-7) exerts many therapeutic effects. However, it is rapidly degraded by ACE and other peptidases. This drawback is largely eliminated for lanthionine-stabilized angiotensin-(1-7), termed cAng-(1-7), which is fully resistant to ACE and has strongly increased resistance to other peptidases. Goal of the present study was to test whether cAng-(1-7) has therapeutic activity in diabetes mouse models: in a multiple low dose streptozotocin-induced model of type I diabetes and / or in a db/db model of type II diabetes. In the type I diabetes model cAng-(1-7) caused in an increase in the insulin level of 133% in week 4 (p < 0.001) compared to vehicle, and in the type II diabetes model an increase of 55% of the insulin level in week 8 (p < 0.05) compared to vehicle. cAng-(1-7) reduced blood glucose levels in the type I model by 37% at day 22 (p < 0.001) and in the type II diabetes model by 17% at day 63 of treatment (p < 0.001) and in an oral glucose tolerance test in a type II diabetes model, by 17% at week 4 (p < 0.01). cAng-(1-7) also caused a reduction of glycated hemoglobin levels in the type II diabetes model of 21% in week 6 (p < 0,001). These data are consistent with therapeutic potential of cAng-(1-7) in type I and II diabetes
    • …
    corecore