892 research outputs found

    Case-control association analysis of rheumatoid arthritis with candidate genes using related cases

    Get PDF
    We performed a case-control association analysis of rheumatoid arthritis (RA) for several candidate genes using the North American Rheumatoid Arthritis Consortium (NARAC) data provided in Genetic Analysis Workshop 15. We conducted the case-control association analysis using all related cases and unrelated controls and compared the results with those from the analysis of samples using only one randomly selected case from each family and all unrelated controls. For both analyses we used a weighted composite likelihood ratio test based on single-nucleotide polymorphism (SNP) markers or haplotypes accounting for the correlation among samples within a family. Several SNPs, including R620W in the candidate gene PTPN22, showed an association with RA status, which confirmed previously reported results. Several other SNPs in the candidate genes, such as CTLA4, HAVCR1, and SUMO4, also had rather small p-values (<0.05), suggesting the associations between them and RA. Our results showed that the p-values obtained from the analysis including all related cases were generally smaller than those obtained from the analysis including only one randomly selected case per family. These results, together with the results, based on simulated data, showed that higher power could be achieved using all related cases

    Unipolar Resistance Switching in Amorphous High-k dielectrics Based on Correlated Barrier Hopping Theory

    Full text link
    We have proposed a kind of nonvolatile resistive switching memory based on amorphous LaLuO3, which has already been established as a promising candidate of high-k gate dielectric employed in transistors. Well-developed unipolar switching behaviors in amorphous LaLuO3 make it suited for not only logic but memory applications using the conventional semiconductor or the emerging nano/CMOS architectures. The conduction transition between high- and low- resistance states is attributed to the change in the separation between oxygen vacancy sites in the light of the correlated barrier hopping theory. The mean migration distances of vacancies responsible for the resistive switching are demonstrated in nanoscale, which could account for the ultrafast programming speed of 6 ns. The origin of the distributions in switching parameters in oxides can be well understood according to the switching principle. Furthermore, an approach has also been developed to make the operation voltages predictable for the practical applications of resistive memories.Comment: 18 pages, 6 figure

    Optoelectronics in Suppression Noise of Light

    Get PDF
    • …
    corecore