138 research outputs found

    Search for the Θ+\Theta^+ pentaquark in the reaction γd→pK−K+n\gamma d \to p K^- K^+ n

    Full text link
    A search for the \thp in the reaction Îłd→pK−K+n\gamma d \to pK^-K^+n was completed using the CLAS detector at Jefferson Lab. A study of the same reaction, published earlier, reported the observation of a narrow \thp resonance. The present experiment, with more than 30 times the integrated luminosity of our earlier measurement, does not show any evidence for a narrow pentaquark resonance. The angle-integrated upper limit on \thp production in the mass range of 1.52 to 1.56 GeV/c2^2 for the Îłd→pK−Θ+\gamma d \to pK^-\Theta^+ reaction is 0.3 nb (95% CL). This upper limit depends on assumptions made for the mass and angular distribution of \thp production. Using \lamstar production as an empirical measure of rescattering in the deuteron, the cross section upper limit for the elementary Îłn→K−Θ+\gamma n \to K^-\Theta^+ reaction is estimated to be a factor of 10 higher, {\it i.e.}, ∌3\sim 3 nb (95% CL).Comment: 5 figures, submitted to PRL, revised for referee comment

    Observation of an Exotic S=+1S=+1 Baryon in Exclusive Photoproduction from the Deuteron

    Full text link
    In an exclusive measurement of the reaction Îłd→K+K−pn\gamma d \to K^+ K^- p n, a narrow peak that can be attributed to an exotic baryon with strangeness S=+1S=+1 is seen in the K+nK^+n invariant mass spectrum. The peak is at 1.542±0.0051.542\pm 0.005 GeV/c2^2 with a measured width of 0.021 GeV/c2^2 FWHM, which is largely determined by experimental mass resolution. The statistical significance of the peak is 5.2±0.6σ5.2 \pm 0.6 \sigma. The mass and width of the observed peak are consistent with recent reports of a narrow S=+1S=+1 baryon by other experimental groups.Comment: 5 pages, 5 figure

    Search for Θ+(1540)\Theta^+(1540) pentaquark in high statistics measurement of γp→Kˉ0K+n\gamma p \to \bar K^0 K^+ n at CLAS

    Full text link
    The exclusive reaction γp→Kˉ0K+n\gamma p \to \bar K^0 K^+ n was studied in the photon energy range between 1.6-3.8 GeV searching for evidence of the exotic baryon Θ+(1540)→nK+\Theta^+(1540)\to nK^+. The decay to nK+nK^+ requires the assignment of strangeness S=+1S=+1 to any observed resonance. Data were collected with the CLAS detector at the Thomas Jefferson National Accelerator Facility corresponding to an integrated luminosity of 70 pb−1pb^{-1}. No evidence for the Θ+\Theta^+ pentaquark was found. Upper limits were set on the production cross section as function of center-of-mass angle and nK+nK^+ mass. The 95% CL upper limit on the total cross section for a narrow resonance at 1540 MeV was found to be 0.8 nb.Comment: Submitted to Physical Review Letter

    Electron Scattering From High-Momentum Neutrons in Deuterium

    Full text link
    We report results from an experiment measuring the semi-inclusive reaction d(e,eâ€Čps)d(e,e'p_s) where the proton psp_s is moving at a large angle relative to the momentum transfer. If we assume that the proton was a spectator to the reaction taking place on the neutron in deuterium, the initial state of that neutron can be inferred. This method, known as spectator tagging, can be used to study electron scattering from high-momentum (off-shell) neutrons in deuterium. The data were taken with a 5.765 GeV electron beam on a deuterium target in Jefferson Laboratory's Hall B, using the CLAS detector. A reduced cross section was extracted for different values of final-state missing mass W∗W^{*}, backward proton momentum p⃗s\vec{p}_{s} and momentum transfer Q2Q^{2}. The data are compared to a simple PWIA spectator model. A strong enhancement in the data observed at transverse kinematics is not reproduced by the PWIA model. This enhancement can likely be associated with the contribution of final state interactions (FSI) that were not incorporated into the model. A ``bound neutron structure function'' F2neffF_{2n}^{eff} was extracted as a function of W∗W^{*} and the scaling variable x∗x^{*} at extreme backward kinematics, where effects of FSI appear to be smaller. For ps>400p_{s}>400 MeV/c, where the neutron is far off-shell, the model overestimates the value of F2neffF_{2n}^{eff} in the region of x∗x^{*} between 0.25 and 0.6. A modification of the bound neutron structure function is one of possible effects that can cause the observed deviation.Comment: 33 pages RevTeX, 9 figures, to be submitted to Phys. Rev. C. Fixed 1 Referenc

    A Kinematically Complete Measurement of the Proton Structure Function F2 in the Resonance Region and Evaluation of Its Moments

    Get PDF
    We measured the inclusive electron-proton cross section in the nucleon resonance region (W < 2.5 GeV) at momentum transfers Q**2 below 4.5 (GeV/c)**2 with the CLAS detector. The large acceptance of CLAS allowed for the first time the measurement of the cross section in a large, contiguous two-dimensional range of Q**2 and x, making it possible to perform an integration of the data at fixed Q**2 over the whole significant x-interval. From these data we extracted the structure function F2 and, by including other world data, we studied the Q**2 evolution of its moments, Mn(Q**2), in order to estimate higher twist contributions. The small statistical and systematic uncertainties of the CLAS data allow a precise extraction of the higher twists and demand significant improvements in theoretical predictions for a meaningful comparison with new experimental results.Comment: revtex4 18 pp., 12 figure

    Two-Nucleon Momentum Distributions Measured in 3He(e,e'pp)n

    Full text link
    We have measured the 3He(e,e'pp)n reaction at 2.2 GeV over a wide kinematic range. The kinetic energy distribution for `fast' nucleons (p > 250 MeV/c) peaks where two nucleons each have 20% or less, and the third nucleon has most of the transferred energy. These fast pp and pn pairs are back-to-back with little momentum along the three-momentum transfer, indicating that they are spectators. Experimental and theoretical evidence indicates that we have measured distorted two-nucleon momentum distributions by striking the third nucleon and detecting the spectator correlated pair.Comment: 6 pages, 5 figures, submitted to PR

    Measurement of the Polarized Structure Function σLTâ€Č\sigma_{LT^\prime} for p(e⃗,eâ€Čπ+)np(\vec{e},e'\pi^+)n in the Δ(1232)\Delta(1232) Resonance Region

    Full text link
    The polarized longitudinal-transverse structure function σLTâ€Č\sigma_{LT^\prime} has been measured using the p(e⃗,eâ€Čπ+)np(\vec e,e'\pi^+)n reaction in the Δ(1232)\Delta(1232) resonance region at Q2=0.40Q^2=0.40 and 0.65 GeV2^2. No previous σLTâ€Č\sigma_{LT^\prime} data exist for this reaction channel. The kinematically complete experiment was performed at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS) using longitudinally polarized electrons at an energy of 1.515 GeV. A partial wave analysis of the data shows generally better agreement with recent phenomenological models of pion electroproduction compared to the previously measured π0p\pi^0 p channel. A fit to both π0p\pi^0 p and π+n\pi^+ n channels using a unitary isobar model suggests the unitarized Born terms provide a consistent description of the non-resonant background. The tt-channel pion pole term is important in the π0p\pi^0 p channel through a rescattering correction, which could be model-dependent.Comment: 6 pages, LaTex, 5 eps figures: Submitted to PRC/Brief Reports v2: Updated referenc

    Complete measurement of three-body photodisintegration of 3He for photon energies between 0.35 and 1.55 GeV

    Full text link
    The three-body photodisintegration of 3He has been measured with the CLAS detector at Jefferson Lab, using tagged photons of energies between 0.35 GeV and 1.55 GeV. The large acceptance of the spectrometer allowed us for the first time to cover a wide momentum and angular range for the two outgoing protons. Three kinematic regions dominated by either two- or three-body contributions have been distinguished and analyzed. The measured cross sections have been compared with results of a theoretical model, which, in certain kinematic ranges, have been found to be in reasonable agreement with the data.Comment: 22 pages, 25 eps figures, 2 tables, submitted to PRC. Modifications: removed 2 figures, improvements on others, a few minor modifications to the tex

    Onset of asymptotic scaling in deuteron photodisintegration

    Full text link
    We investigate the transition from the nucleon-meson to quark-gluon description of the strong interaction using the photon energy dependence of the d(γ,p)nd(\gamma,p)n differential cross section for photon energies above 0.5 GeV and center-of-mass proton angles between 30∘30^{\circ} and 150∘150^{\circ}. A possible signature for this transition is the onset of cross section s−11s^{-11} scaling with the total energy squared, ss, at some proton transverse momentum, PTP_T. The results show that the scaling has been reached for proton transverse momentum above about 1.1 GeV/c. This may indicate that the quark-gluon regime is reached above this momentum.Comment: Accepted by PRL; 5 pages, 2 figure

    Survey of A_LT' asymmetries in semi-exclusive electron scattering on He4 and C12

    Full text link
    Single spin azimuthal asymmetries A_LT' were measured at Jefferson Lab using 2.2 and 4.4 GeV longitudinally polarized electrons incident on He4 and C12 targets in the CLAS detector. A_LT' is related to the imaginary part of the longitudinal-transverse interference and in quasifree nucleon knockout it provides an unambiguous signature for final state interactions (FSI). Experimental values of A_LT' were found to be below 5%, typically |A_LT'| < 3% for data with good statistical precision. Optical Model in Eikonal Approximation (OMEA) and Relativistic Multiple-Scattering Glauber Approximation (RMSGA) calculations are shown to be consistent with the measured asymmetries.Comment: 9 pages, 5 figure
    • 

    corecore