139 research outputs found
Search for the pentaquark in the reaction
A search for the \thp in the reaction was completed
using the CLAS detector at Jefferson Lab. A study of the same reaction,
published earlier, reported the observation of a narrow \thp resonance. The
present experiment, with more than 30 times the integrated luminosity of our
earlier measurement, does not show any evidence for a narrow pentaquark
resonance. The angle-integrated upper limit on \thp production in the mass
range of 1.52 to 1.56 GeV/c for the reaction is
0.3 nb (95% CL). This upper limit depends on assumptions made for the mass and
angular distribution of \thp production. Using \lamstar production as an
empirical measure of rescattering in the deuteron, the cross section upper
limit for the elementary reaction is estimated to be
a factor of 10 higher, {\it i.e.}, nb (95% CL).Comment: 5 figures, submitted to PRL, revised for referee comment
Observation of an Exotic Baryon in Exclusive Photoproduction from the Deuteron
In an exclusive measurement of the reaction , a
narrow peak that can be attributed to an exotic baryon with strangeness
is seen in the invariant mass spectrum. The peak is at
GeV/c with a measured width of 0.021 GeV/c FWHM, which is largely
determined by experimental mass resolution. The statistical significance of the
peak is . The mass and width of the observed peak are
consistent with recent reports of a narrow baryon by other experimental
groups.Comment: 5 pages, 5 figure
Electron Scattering From High-Momentum Neutrons in Deuterium
We report results from an experiment measuring the semi-inclusive reaction
where the proton is moving at a large angle relative to the
momentum transfer. If we assume that the proton was a spectator to the reaction
taking place on the neutron in deuterium, the initial state of that neutron can
be inferred. This method, known as spectator tagging, can be used to study
electron scattering from high-momentum (off-shell) neutrons in deuterium. The
data were taken with a 5.765 GeV electron beam on a deuterium target in
Jefferson Laboratory's Hall B, using the CLAS detector. A reduced cross section
was extracted for different values of final-state missing mass ,
backward proton momentum and momentum transfer . The data
are compared to a simple PWIA spectator model. A strong enhancement in the data
observed at transverse kinematics is not reproduced by the PWIA model. This
enhancement can likely be associated with the contribution of final state
interactions (FSI) that were not incorporated into the model. A ``bound neutron
structure function'' was extracted as a function of and
the scaling variable at extreme backward kinematics, where effects of
FSI appear to be smaller. For MeV/c, where the neutron is far
off-shell, the model overestimates the value of in the region of
between 0.25 and 0.6. A modification of the bound neutron structure
function is one of possible effects that can cause the observed deviation.Comment: 33 pages RevTeX, 9 figures, to be submitted to Phys. Rev. C. Fixed 1
Referenc
Search for pentaquark in high statistics measurement of at CLAS
The exclusive reaction was studied in the
photon energy range between 1.6-3.8 GeV searching for evidence of the exotic
baryon . The decay to requires the assignment of
strangeness to any observed resonance. Data were collected with the CLAS
detector at the Thomas Jefferson National Accelerator Facility corresponding to
an integrated luminosity of 70 . No evidence for the
pentaquark was found. Upper limits were set on the production cross section as
function of center-of-mass angle and mass. The 95% CL upper limit on the
total cross section for a narrow resonance at 1540 MeV was found to be 0.8 nb.Comment: Submitted to Physical Review Letter
Two-Nucleon Momentum Distributions Measured in 3He(e,e'pp)n
We have measured the 3He(e,e'pp)n reaction at 2.2 GeV over a wide kinematic
range. The kinetic energy distribution for `fast' nucleons (p > 250 MeV/c)
peaks where two nucleons each have 20% or less, and the third nucleon has most
of the transferred energy. These fast pp and pn pairs are back-to-back with
little momentum along the three-momentum transfer, indicating that they are
spectators. Experimental and theoretical evidence indicates that we have
measured distorted two-nucleon momentum distributions by striking the third
nucleon and detecting the spectator correlated pair.Comment: 6 pages, 5 figures, submitted to PR
A Kinematically Complete Measurement of the Proton Structure Function F2 in the Resonance Region and Evaluation of Its Moments
We measured the inclusive electron-proton cross section in the nucleon
resonance region (W < 2.5 GeV) at momentum transfers Q**2 below 4.5 (GeV/c)**2
with the CLAS detector. The large acceptance of CLAS allowed for the first time
the measurement of the cross section in a large, contiguous two-dimensional
range of Q**2 and x, making it possible to perform an integration of the data
at fixed Q**2 over the whole significant x-interval. From these data we
extracted the structure function F2 and, by including other world data, we
studied the Q**2 evolution of its moments, Mn(Q**2), in order to estimate
higher twist contributions. The small statistical and systematic uncertainties
of the CLAS data allow a precise extraction of the higher twists and demand
significant improvements in theoretical predictions for a meaningful comparison
with new experimental results.Comment: revtex4 18 pp., 12 figure
Measurement of the Polarized Structure Function for in the Resonance Region
The polarized longitudinal-transverse structure function
has been measured using the reaction in the
resonance region at and 0.65 GeV. No previous
data exist for this reaction channel. The kinematically
complete experiment was performed at Jefferson Lab with the CEBAF Large
Acceptance Spectrometer (CLAS) using longitudinally polarized electrons at an
energy of 1.515 GeV. A partial wave analysis of the data shows generally better
agreement with recent phenomenological models of pion electroproduction
compared to the previously measured channel. A fit to both
and channels using a unitary isobar model suggests the unitarized
Born terms provide a consistent description of the non-resonant background. The
-channel pion pole term is important in the channel through a
rescattering correction, which could be model-dependent.Comment: 6 pages, LaTex, 5 eps figures: Submitted to PRC/Brief Reports v2:
Updated referenc
Complete measurement of three-body photodisintegration of 3He for photon energies between 0.35 and 1.55 GeV
The three-body photodisintegration of 3He has been measured with the CLAS
detector at Jefferson Lab, using tagged photons of energies between 0.35 GeV
and 1.55 GeV. The large acceptance of the spectrometer allowed us for the first
time to cover a wide momentum and angular range for the two outgoing protons.
Three kinematic regions dominated by either two- or three-body contributions
have been distinguished and analyzed. The measured cross sections have been
compared with results of a theoretical model, which, in certain kinematic
ranges, have been found to be in reasonable agreement with the data.Comment: 22 pages, 25 eps figures, 2 tables, submitted to PRC. Modifications:
removed 2 figures, improvements on others, a few minor modifications to the
tex
Survey of A_LT' asymmetries in semi-exclusive electron scattering on He4 and C12
Single spin azimuthal asymmetries A_LT' were measured at Jefferson Lab using
2.2 and 4.4 GeV longitudinally polarized electrons incident on He4 and C12
targets in the CLAS detector. A_LT' is related to the imaginary part of the
longitudinal-transverse interference and in quasifree nucleon knockout it
provides an unambiguous signature for final state interactions (FSI).
Experimental values of A_LT' were found to be below 5%, typically |A_LT'| < 3%
for data with good statistical precision. Optical Model in Eikonal
Approximation (OMEA) and Relativistic Multiple-Scattering Glauber Approximation
(RMSGA) calculations are shown to be consistent with the measured asymmetries.Comment: 9 pages, 5 figure
Onset of asymptotic scaling in deuteron photodisintegration
We investigate the transition from the nucleon-meson to quark-gluon
description of the strong interaction using the photon energy dependence of the
differential cross section for photon energies above 0.5 GeV and
center-of-mass proton angles between and . A possible
signature for this transition is the onset of cross section scaling
with the total energy squared, , at some proton transverse momentum, .
The results show that the scaling has been reached for proton transverse
momentum above about 1.1 GeV/c. This may indicate that the quark-gluon regime
is reached above this momentum.Comment: Accepted by PRL; 5 pages, 2 figure
- âŠ