29 research outputs found

    Auger electron wave packet interferometry on extreme timescales with coherent soft x rays

    Get PDF
    Wave packet interferometry provides benchmark information on light-induced electronic quantum states by monitoring their relative amplitudes and phases during coherent excitation, propagation,and decay. The relative phase control of soft x-ray pulse replicas on the single-digit attosecond timescale achieved in our experiments makes this method a powerful tool to probe ultrafast quantum phenomena such as the excitation of Auger shake-up states with sub-cycle precision. In this contribution we present first results obtained for different Auger decay channels upon generating L-shell vacancies in argon atoms using Michelson-type all-reflective interferometric autocorrelation at a central free-electron laser photon energy of 274.7 eV

    Charge induced chemical dynamics in glycine probed with time resolved Auger electron spectroscopy

    Get PDF
    In the present contribution, we use x rays to monitor charge induced chemical dynamics in the photoionized amino acid glycine with femtosecond time resolution. The outgoing photoelectron leaves behind the cation in a coherent superposition of quantum mechanical eigenstates. Delayed x ray pulses track the induced coherence through resonant x ray absorption that induces Auger decay. Temporal modulation of the Auger electron signal correlated with specific ions is observed, which is governed by the initial electronic coherence and subsequent vibronic coupling to nuclear degrees of freedom. In the time resolved x ray absorption measurement, we monitor the time frequency spectra of the resulting many body quantum wave packets for a period of 175 fs along different reaction coordinates. Our experiment proves that by measuring specific fragments associated with the glycine dication as a function of the pump probe delay, one can selectively probe electronic coherences at early times associated with a few distinguishable components of the broad electronic wave packet created initially by the pump pulse in the cation. The corresponding coherent superpositions formed by subsets of electronic eigenstates and evolving along parallel dynamical pathways show different phases and time periods in the range of amp; 8722;0.3 0.1 amp; 120587; amp; 8804; amp; 120601; amp; 8804; 0.1 0.2 amp; 120587; and 18.2 1.7 amp; 8722;1.4 amp; 8804; amp; 119879; amp; 8804;23.9 1.2 amp; 8722;1.1 fs. Furthermore, for long delays, the data allow us to pinpoint the driving vibrational modes of chemical dynamics mediating charge induced bond cleavage along different reaction coordinate

    Electronic quantum coherence in glycine molecules probed with ultrashort x ray pulses in real time

    Get PDF
    Here, we use x rays to create and probe quantum coherence in the photoionized amino acid glycine. The outgoing photoelectron leaves behind the cation in a coherent superposition of quantum mechanical eigenstates. Delayed x ray pulses track the induced coherence through resonant x ray absorption that induces Auger decay and by photoelectron emission from sequential double photoionization. Sinusoidal temporal modulation of the detected signal at early times 0 to 25 fs is observed in both measurements. Advanced ab initio many electron simulations allow us to explain the first 25 fs of the detected coherent quantum evolution in terms of the electronic coherence. In the kinematically complete x ray absorption measurement, we monitor its dynamics for a period of 175 fs and observe an evolving modulation that may implicate the coupling of electronic to vibronic coherence at longer time scales. Our experiment provides a direct support for the existence of long lived electronic coherence in photoionized biomolecule

    Imperfect consultant

    No full text

    Cold tolerance of Drosophila species is tightly linked to the epithelial K+ transport capacity of the Malpighian tubules and rectal pads

    No full text
    Insect chill tolerance is strongly associated with the ability to maintain ion and water homeostasis during cold exposure. Maintenance of K+ balance is particularly important due to its role in setting the cell membrane potential that is involved in many aspects of cellular function and viability. In most insects, K+ balance is maintained through secretion at the Malpighian tubules, which balances reabsorption from the hindgut and passive leak arising from the gut lumen. Here, we used the scanning ion-selective electrode technique (SIET) at benign (23°C) and low (6°C) temperatures to examine K+ flux across the Malpighian tubules and the rectal pads in the hindgut in five Drosophila species that differ in cold tolerance. We found that chill-tolerant species were better at maintaining K+ secretion and suppressing reabsorption during cold exposure. In contrast, chillsusceptible species exhibited large reductions in secretion with no change, oraparadoxical increase, in K+ reabsorption. Usinganassay to measure paracellular leak, we found that chill-susceptible species experience alarge increase in leak during cold exposure, which could explain the apparent increase in K+ reabsorption found in these species. Our data therefore strongly support the hypothesis that coldtolerant Drosophila species are better at maintaining K+ homeostasis through an increased ability to maintain K+ secretion rates and through reduced movement of K+ towards the hemolymph. These adaptations are manifested both at the Malpighian tubule and at the rectal pads in the hindgut, and ensure that cold-tolerant species experience less perturbation of K+ homeostasis during cold stress
    corecore