1,576 research outputs found
Microstrip antenna study for Pioneer Saturn/Uranus atmosphere entry probe
The design parameters of a microstrip antenna were studied to determine its performance characteristics as affected by an atmospheric entry probe environment. The technical literature was reviewed to identify the known design and performance characteristics. These data were used to evaluate the expected effects of mission environments on the microstrip antenna design proposed for the Saturn/Uranus Atmospheric Entry Probe (SAEP). Radiation patterns and VSWR measurements were made to evaluate the performance in the SAEP thermal environment. Results of the literature search and pattern tests confirm that the microstrip antenna is a good choice as a transmitting antenna on the SAEP. The microstrip antenna is efficient, compact, and well suited to a space environment. The pattern can be controlled with a minimum beamwidth of 60 degrees (air substrate; e.g., honeycomb structure) and a maximum on the order of 100 degrees with higher dielectric constant substrates. The power handling capacity is good and can be improved by covering the antenna with a dielectric cover
Shuttle antenna radome technology test program. Volume 2: Development of S-band antenna interface design
The effects of the Thermal Protection Subsystem (TPS) contamination on the space shuttle orbiter S band quad antenna due to multiple mission buildup are discussed. A test fixture was designed, fabricated and exposed to ten cycles of simulated ground and flight environments. Radiation pattern and impedance tests were performed to measure the effects of the contaminates. The degradation in antenna performance was attributed to the silicone waterproofing in the TPS tiles rather than exposure to the contaminating sources used in the test program. Validation of the accuracy of an analytical thermal model is discussed. Thermal vacuum tests with a test fixture and a representative S band quad antenna were conducted to evaluate the predictions of the analytical thermal model for two orbital heating conditions and entry from each orbit. The results show that the accuracy of predicting the test fixture thermal responses is largely dependent on the ability to define the boundary and ambient conditions. When the test conditions were accurately included in the analytical model, the predictions were in excellent agreement with measurements
The effects of winglets on low aspect ratio wings at supersonic Mach numbers
A computational study was conducted on two wings, of aspect ratios 1.244 and 1.865, each having 65 degree leading edge sweep angles, to determine the effects of nonplanar winglets at supersonic Mach numbers. A Mach number of 1.62 was selected as the design value. The winglets studied were parametrically varied in alignment, length, sweep, camber, thickness, and dihedral angle to determine which geometry had the best predicted performance. For the computational analysis, an available Euler marching technique was used. The results indicated that the possibility existed for wing-winglet geometries to equal the performance of wing-alone bodies in supersonic flows with both bodies having the same semispan. The first wing with winglet used NACA 1402 airfoils for the base wing and was shown to have lift-to-pressure drag ratios within 0.136 percent to 0.360 percent of the NACA 1402 wing-alone. The other base wing was a natural flow wing which was previously designed specifically for a Mach number of 1.62. The results obtained showed that the natural wing-alone had a slightly higher lift-to-pressure drag than the natural wing with winglets
Demand for large freighter aircraft as projected by the NASA cargo/logistics airlift system studies
The market conditions are examined up through the year 2008 to provide a preliminary assessment of the potential for and the characteristics of an advanced, all-cargo transport aircraft. Any new freighter must compete with current wide-body aircraft and their derivatives. Aircraft larger than the wide-bodies may incur economic penalties and operational problems. A lower direct operating cost is not a sufficient criterion to base a decision for the initiation of a new aircraft development or to select aircraft characteristics. Other factors of equal importance that are reviewed in this paper include considerations of the system infrastructure, the economics of the airlines, and the aircraft manufacturer return on investment. The results of the market forecast and a computer simulation show that an advanced long range aircraft with a payload between 68 to 181 tonnes (75 to 200 tons) could generate a solid foothold beginning around 1994
High temperature antenna development for space shuttle, volume 2
An S-band antenna system and a group of off-the-shelf aircraft antenna were exposed to temperatures simulating shuttle orbital cold soak and entry heating. Radiation pattern and impedance measurements before and after exposure to the thermal environments were used to evaluate the electrical performance. The results of the electrical and thermal testing are given. Test data showed minor changes in electrical performance and established the capability of these antenna to withstand both the low temperatures of space flight and the high temperatures of entry
High temperature antenna development for space shuttle, volume 1
Design concepts for high temperature flush mounted Space Shuttle Orbiter antenna systems are discussed. The design concepts include antenna systems for VHF, L-band, S-band, C-band and Ku-band frequencies. The S-band antenna system design was completed and test hardware fabricated. It was then subjected to electrical and thermal testing to establish design requirements and determine reuse capabilities. The thermal tests consisted of applying ten high temperature cycles simulating the Orbiter entry heating environment in an arc tunnel plasma facility and observing the temperature distributions. Radiation pattern and impedance measurements before and after high temperature exposure were used to evaluated the antenna systems performance. Alternate window design concepts are considered. Layout drawings, supported by thermal and strength analyses, are given for each of the antenna system designs. The results of the electrical and thermal testing of the S-band antenna system are given
Spacecraft receiving antenna study: Outer planets atmospheric entry probe
A quadrifilar helix antenna was selected for the Pioneer spacecraft receiving antenna. A model was constructed for radiation pattern measurement at 2.2 GHz. Radiation patterns were measured with the model quadrifilar helix antenna mounted on a Pioneer spacecraft model and four different configurations were tested. The results show that the antenna location does not have a major effect on its patterns over the aft hemisphere but moving the antenna away from the spacecraft improves the antenna performance
- …