32 research outputs found

    A sol-gel method for growing superconducting MgB2 films

    Full text link
    In this paper we report a new sol-gel method for the fabrication of MgB2 films. Polycrystalline MgB2 films were prepared by spin-coating a precursor solution of Mg(BH_4)_2 diethyl ether on (001)Al2O3 substrates followed with annealing in Mg vapor. In comparison with the MgB2 films grown by other techniques, our films show medium qualities including a superconducting transition temperature of Tc ~ 37 K, a critical current density of Jc(5 K, 0 T) ~ 5 {\times} 10^6 A cm^{-2}, and a critical field of H_{c2}(0) ~ 19 T. Such a sol-gel technique shows potential in the commercial fabrication of practically used MgB2 films as well as MgB2 wires and tapes.Comment: 8 pages, 5 figure

    Situational factors shape moral judgements in the trolley dilemma in Eastern, Southern and Western countries in a culturally diverse sample

    Get PDF

    Relaxation to bradykinin in bovine pulmonary supernumerary arteries can be mediated by both a nitric oxide-dependent and -independent mechanism

    No full text
    1. The aim of the present study was to determine the relative contribution of prostanoids, nitric oxide and K(+) channels in the bradykinin-induced relaxation of bovine pulmonary supernumerary arteries. 2. In endothelium-intact, but not denuded rings, bradykinin produced a concentration-dependent relaxation (pEC(50), 9.6±0.1), which was unaffected by the cyclo-oxygenase inhibitor indomethacin. The nitric oxide scavenger hydroxocobalamin (200 μM, pEC(50), 8.5±0.2) and the nitric oxide synthase inhibitor L-NAME (100 μM, pEC(50), 8.9±0.1) and the combination of L-NAME and hydroxocobalamin (pEC(50), 8.1±0.2) produced rightward shifts in the bradykinin concentration response curve. 3. The guanylyl cyclase inhibitor ODQ (10 μM, pEC(50), 9.6±0.4) did not affect the response to bradykinin. 4. Elevating the extracellular [K(+)] to 30 mM did not affect the response to bradykinin but abolished the response when ODQ or L-NAME was present. 5. The K(+) channel blocker apamin (100 nM), combined with charybdotoxin (100 nM), produced a small reduction in the maximum response to bradykinin but they abolished the response to bradykinin when ODQ, L-NAME or hydroxocobalamin were present. Apamin (100 nM) combined with iberiotoxin (100 nM) also reduced the response to bradykinin in the presence of hydroxocobalamin or L-NAME. 6. The concentration response curve for sodium nitroprusside-induced relaxation was abolished by ODQ (10 μM) and shifted to the right by apamin and charybdotoxin. 7. These studies suggest that in bovine pulmonary supernumerary arteries bradykinin can stimulate the formation of nitric oxide and activate an EDHF-like mechanism and that either of these pathways alone can mediate the bradykinin-induced relaxation. In addition nitric oxide, acting through guanylyl cyclase, can activate an apamin/charbydotoxin-sensitive K(+) channel in this tissue
    corecore