2,589 research outputs found
Jahn-Teller distortions and phase separation in doped manganites
A "minimal model" of the Kondo-lattice type is used to describe a competition
between the localization and metallicity in doped manganites and related
magnetic oxides with Jahn-Teller ions. It is shown that the number of itinerant
charge carriers can be significantly lower than that implied by the doping
level x. A strong tendency to the phase separation is demonstrated for a wide
range of intermediate doping concentrations vanishing at low and high doping.
The phase diagram of the model in the x-T plane is constructed. At low
temperatures, the system is in a state with a long-range magnetic order:
antiferromagnetic (AF), ferromagnetic (FM), or AF-FM phase separated (PS)
state. At high temperatures, there can exist two types of the paramagnetic (PM)
state with zero and nonzero density of the itinerant electrons. In the
intermediate temperature range, the phase diagram includes different kinds of
the PS states: AF-FM, FM-PM, and PM with different content of itinerant
electrons. The applied magnetic field changes the phase diagram favoring the FM
ordering. It is shown that the variation of temperature or magnetic field can
induce the metal-insulator transition in a certain range of doping levels.Comment: 14 pages, 7 figures, submitted to Phys. Rev. B.; v.2 contains the
changes introduced according to comments of the PRB Referees; in v. 3, some
misprints are correcte
The evolution with temperature of magnetic polaron state in an antiferromagnetic chain with impurities
The thermal behavior of a one-dimensional antiferromagnetic chain doped by
donor impurities was analyzed. The ground state of such a chain corresponds to
the formation of a set of ferromagnetically correlated regions localized near
impurities (bound magnetic polarons). At finite temperatures, the magnetic
structure of the chain was calculated simultaneously with the wave function of
a conduction electron bound by an impurity. The calculations were performed
using an approximate variational method and a Monte Carlo simulation. Both
these methods give similar results. The analysis of the temperature dependence
of correlation functions for neighboring local spins demonstrated that the
ferromagnetic correlations inside a magnetic polaron remain significant even
above the N\'eel temperature implying rather high stability of the
magnetic polaron state. In the case when the electron-impurity coupling energy
is not too high (for lower that the electron hopping integral ), the
magnetic polaron could be depinned from impurity retaining its magnetic
structure. Such a depinning occurs at temperatures of the order of . At
even higher temperatures () magnetic polarons disappear and the chain
becomes completely disordered.Comment: 17 pages, 5 figures, RevTe
Thermodynamics of the one-dimensional SU(4) symmetric spin-orbital model
The ground state properties and the thermodynamics of the one-dimensional
SU(4) symmetric spin system with orbital degeneracy are investigated using the
quantum Monte Carlo loop algorithm. The spin-spin correlation functions exhibit
a 4-site periodicity, and their low temperature behavior is controlled by two
correlation lengths that diverge like the inverse temperature, while the
entropy is linear in temperature and its slope is consistent with three gapless
modes of velocity . The physical implications of these results are
discussed.Comment: 4 pages, 4 figures, RevTe
Magnetic polarons in doped 1D antiferromagnetic chain
The structure of magnetic polarons (ferrons) is studied for an 1D
antiferromagnetic chain doped by non-magnetic donor impurities. The conduction
electrons are assumed to be bound by the impurities. Such a chain can be
described as a set of ferrons at the antiferromagnetic background. We found
that two types of ferrons can exist in the system. The ground state of the
chain corresponds to the ferrons with the sizes of the order of the
localization length of the electron near the impurity. The ferrons of the
second type produce a more extended distortion of spins in the chain. They are
stable within a finite domain of the system parameters and can be treated as
excitations above the ground state. The ferrons in the excited states can
appear in pairs only. The energy of the excited states decreases with the
growth in density of impurities. This can be interpreted as a manifestation of
an attractive interaction between ferrons.Comment: 6 pages, 5 figures, RevTex4, submitted to PR
A Quantum Monte Carlo Method and Its Applications to Multi-Orbital Hubbard Models
We present a framework of an auxiliary field quantum Monte Carlo (QMC) method
for multi-orbital Hubbard models. Our formulation can be applied to a
Hamiltonian which includes terms for on-site Coulomb interaction for both
intra- and inter-orbitals, intra-site exchange interaction and energy
differences between orbitals. Based on our framework, we point out possible
ways to investigate various phase transitions such as metal-insulator, magnetic
and orbital order-disorder transitions without the minus sign problem. As an
application, a two-band model is investigated by the projection QMC method and
the ground state properties of this model are presented.Comment: 10 pages LaTeX including 2 PS figures, to appear in J.Phys.Soc.Jp
Planar spin exchange in LiNiO_2
We study the planar spin exchange couplings in LiNiO2 using a perturbative
approach. We show that the inclusion of the trigonal crystal field splitting at
the Oxygen sites leads to the appearance of antiferromagnetic exchange
integrals in deviation from the Goodenough-Kanamori-Anderson rules for this 90
degree bond. That gives a microscopic foundation for the recently observed
coexistence of ferromagnetic and antiferromagnetic couplings in the
orbitally-frustrated state of LiNiO2. (F. Reynaud et al, Phys. Rev. Lett. 86,
3638 (2001))Comment: latex, revtex4, 6 pages, 3 figure
Double-exchange via degenerate orbitals
We consider the double-exchange for systems in which doped electrons occupy
degenerate orbitals, treating the realistic situation with double degenerate
orbitals. We show that the orbital degeneracy leads in general to
formation of anisotropic magnetic structures and that in particular, depending
on the doping concentration, the layered magnetic structures of the A-type and
chain-like structures of the C-type are stabilized. The phase-diagram that we
obtain provides an explanation for the experimentally observed magnetic
structures of some over-doped (electron-doped) manganites of the type
NdSrMnO, PrSrMnO and SmCaMnO
with .Comment: 4 pages, 1 figur
GRB 110205A: Anatomy of a long gamma-ray burst
The Swift burst GRB 110205A was a very bright burst visible in the Northern
hemisphere. GRB 110205A was intrinsically long and very energetic and it
occurred in a low-density interstellar medium environment, leading to delayed
afterglow emission and a clear temporal separation of the main emitting
components: prompt emission, reverse shock, and forward shock. Our observations
show several remarkable features of GRB 110205A : the detection of prompt
optical emission strongly correlated with the BAT light curve, with no temporal
lag between the two ; the absence of correlation of the X-ray emission compared
to the optical and high energy gamma-ray ones during the prompt phase ; and a
large optical re-brightening after the end of the prompt phase, that we
interpret as a signature of the reverse shock. Beyond the pedagogical value
offered by the excellent multi-wavelength coverage of a GRB with temporally
separated radiating components, we discuss several questions raised by our
observations: the nature of the prompt optical emission and the spectral
evolution of the prompt emission at high-energies (from 0.5 keV to 150 keV) ;
the origin of an X-ray flare at the beginning of the forward shock; and the
modeling of the afterglow, including the reverse shock, in the framework of the
classical fireball model.Comment: 21 pages, 5 figure (all in colors), accepted for publication in Ap
Peierls-like transition induced by frustration in a two-dimensional antiferromagnet
We show that the introduction of frustration into the spin-1/2
two-dimensional (2D) antiferromagnetic Heisenberg model on a square lattice via
a next-nearest neighbor exchange interaction can lead to a Peierls-like
transition, from a tetragonal to an orthorhombic phase, when the spins are
coupled to adiabatic phonons. The two different orthorhombic ground states
define an Ising order parameter, which is expected to lead to a finite
temperature transition. Implications for , the first
realization of that model, will be discussed.Comment: 4 pages, to be published on Physical Review Letter
Orbital order in classical models of transition-metal compounds
We study the classical 120-degree and related orbital models. These are the
classical limits of quantum models which describe the interactions among
orbitals of transition-metal compounds. We demonstrate that at low temperatures
these models exhibit a long-range order which arises via an "order by disorder"
mechanism. This strongly indicates that there is orbital ordering in the
quantum version of these models, notwithstanding recent rigorous results on the
absence of spin order in these systems.Comment: 7 pages, 1 eps fi
- …