438 research outputs found

    Physics of hollow Bose-Einstein condensates

    Get PDF
    Bose-Einstein condensate shells, while occurring in ultracold systems of coexisting phases and potentially within neutron stars, have yet to be realized in isolation on Earth due to the experimental challenge of overcoming gravitational sag. Motivated by the expected realization of hollow condensates by the space-based Cold Atomic Laboratory in microgravity conditions, we study a spherical condensate undergoing a topological change from a filled sphere to a hollow shell. We argue that the collective modes of the system show marked and robust signatures of this hollowing transition accompanied by the appearance of a new boundary. In particular, we demonstrate that the frequency spectrum of the breathing modes shows a pronounced depression as it evolves from the filled sphere limit to the hollowing transition. Furthermore, when the center of the system becomes hollow surface modes show a global restructuring of their spectrum due to the availability of a new, inner, surface for supporting density distortions. We pinpoint universal features of this topological transition as well as analyse the spectral evolution of collective modes in the experimentally relevant case of a bubble-trap.Comment: 8 pages, 4 figure

    Momentum-space Aharonov-Bohm interferometry in Rashba spin-orbit coupled Bose-Einstein condensates

    Full text link
    Since the recent experimental realization of synthetic Rashba spin-orbit coupling paved a new avenue for exploring and engineering topological phases in ultracold atoms, a precise, solid detection of Berry phase has been desired for unequivocal characterization of system topology. Here, we propose a scheme to conduct momentum-space Aharonov-Bohm interferometry in a Rashba spin-orbit coupled Bose-Einstein condensate with a sudden change of in-plane Zeeman field, capable of measuring the Berry phase of Rashba energy bands. We find that the Berry phase with the presence of a Dirac point is directly revealed by a robust dark interference fringe, and that as a function of external Zeeman field is characterized by the contrast of fringes. We also build a variational model describing the interference process with semiclassical equations of motion of essential dynamical quantities, which lead to agreeable trajectories and geometric phases with the real-time simulation of Gross-Pitaevskii equation. Our study would provide timely guidance for the experimental detection of Berry phase in ultracold atomic systems and help further investigation on their interference dynamics in momentum space.Comment: 9 pages, 6 figure
    corecore