6,609 research outputs found
Automated image analysis to improve bead ingestion toxicity test counts in the protozoan Tetrahymena pyriformis
Prova de tipográfica (In Press).Aims: To improve bead ingestion counts in Tetrahymena pyriformis by automated image analysis as an alternative to direct-counts.
Methods and Results: Fluorescent latex beads were added to T. pyriformis cultures for ingestion tests. The number of beads ingested by 25 cells was counted directly by epifluorescence microscopy and compared with similar data from image analysis. ANOVA indicated that counts were not significantly different (P < 0.05). The image
analysis particularly provided advantages in terms of speed.
Conclusions: The image analysis is superior to direct beads counting in T. pyriformis particularly in terms of speed of analysis.
Significance and Impact of the Study: The image analysis method is very rapid and will allow many more toxicological analyses to be undertaken with less operator error
Felines Sarcoid bei einer 1-jährigen europäischen Hauskatze ausgelöst durch bovines Papillomavirus Typ 14 in der Schweiz
Eine einjährige Bauernhofkatze zeigte einen 5 cm grossen Knoten an der linken Nasenöffnung, der aufgrund seiner Lokalisation nur unvollständig entfernt werden konnte. Hinsichtlich der infiltrativ wachsenden, spindelförmigen Proliferation wurde histologisch ein felines Sarkoid diagnostiziert. Die aus dem Gewebe isolierte DNA konnte durch zwei PCRs als solche von bovinem Papillomavirus 14 (BPV-14) identifiziert werden. Die 194 und 549 Basenpaare (bp) langen, amplifizierten Sequenzen waren 99 bzw. 100% identisch mit einer von einem in den USA isolierten Virus, welches mit felinem Sarkoid in Zusammenhang gebracht wurde. Trotz unvollständiger Exzision, ist bis 10 Monate nach der Operation kein Rezidiv aufgetreten
Algal-Mediated Priming Effects on the Ecological Stoichiometry of Leaf Litter Decomposition: A Meta-Analysis
In aquatic settings, periphytic algae exude labile carbon (C) that can significantly suppress or stimulate heterotrophic decomposition of recalcitrant C via priming effects. The magnitude and direction of priming effects may depend on the availability and stoichiometry of nutrients like nitrogen (N) and phosphorus (P), which can constrain algal and heterotrophic activity; in turn, priming may affect heterotrophic acquisition not only of recalcitrant C, but also N and P. In this study, we conducted a meta-analysis of algal-mediated priming across leaf litter decomposition experiments to investigate (1) bottom-up controls on priming intensity by dissolved N and P concentrations, and (2) effects of algal-mediated priming on the fate of litter-periphyton N and P during decomposition. Across a total of nine datasets, we quantified priming intensity and tested algal effects on litter-periphyton C:N, C:P, and N- and P-specific mass loss rates. Algal effect sizes did not significantly differ from zero, indicating weak or inconsistent algal effects on litter-periphyton stoichiometry and nutrient loss. These findings were likely due to wide variation in algal priming intensity across a limited number of experiments, ranging from strongly negative (410% reduced decomposition) to strongly positive (104% increased decomposition). Correlation and response surface analyses showed that priming intensity switched from negative to positive with increasing dissolved inorganic N:P across datasets. Algal effects on litter-periphyton stoichiometry and nutrient loss further co-varied with dissolved N:P across datasets, suggesting algae most strongly influence the stoichiometry of decomposition under imbalanced N:P, when priming is most intense. Our findings from this limited meta-analysis support the need for additional tests of aquatic priming effects, especially across gradients of N and P availability, with consideration of coupled C and nutrient dynamics during priming of organic matter decomposition
Estimation of breed-specific heterosis effects for birth, weaning, and yearling weight in cattle
Heterosis, assumed proportional to expected breed heterozygosity, was calculated for 6834 individuals with birth, weaning and yearling weight records from Cycle VII and advanced generations of the U.S. Meat Animal Research Center (USMARC) Germplasm Evaluation (GPE) project. Breeds represented in these data included: Angus, Hereford, Red Angus, Charolais, Gelbvieh, Simmental, Limousin and Composite MARC III. Heterosis was further estimated by proportions of British × British (B × B), British × Continental (B × C) and Continental × Continental (C × C) crosses and by breed-specific combinations. Model 1 fitted fixed covariates for heterosis within biological types while Model 2 fitted random breed-specific combinations nested within the fixed biological type covariates. Direct heritability estimates (SE) for birth, weaning ,and yearling weight for Model 1 were 0.42 (0.04), 0.22 (0.03), and 0.39 (0.05), respectively. The direct heritability estimates (SE) of birth, weaning, and yearling weight for Model 2 were the same as Model 1, except yearling weight heritability was 0.38 (0.05). The B × B, B × C, and C × C heterosis estimates for birth weight were 0.47 (0.37), 0.75 (0.32), and 0.73 (0.54) kg, respectively. The B × B, B × C, and C × C heterosis estimates for weaning weight were 6.43 (1.80), 8.65 (1.54), and 5.86 (2.57) kg, respectively. Yearling weight estimates for B × B, B × C, and C × C heterosis were 17.59(3.06), 13.88 (2.63), and 9.12 (4.34) kg, respectively. Differences did exist among estimates of breed-specific heterosis for weaning and yearling weight, although the variance component associated with breed-specific heterosis was not significant. These results illustrate that there are differences in breed-specific heterosis and exploiting these differences can lead to varying levels of heterosis among mating plans
Brown Meets Green: Light and Nutrients Alter Detritivore Assimilation of Microbial Nutrients From Leaf Litter
In aquatic detrital-based food webs, research suggests that autotroph-heterotroph microbial interactions exert bottom-up controls on energy and nutrient transfer. To address this emerging topic, we investigated microbial responses to nutrient and light treatments during Liriodendron tulipifera litter decomposition and fed litter to the caddisfly larvae Pycnopsyche sp. We measured litter-associated algal, fungal, and bacterial biomass and production. Microbes were also labeled with 14C and 33P to trace distinct microbial carbon (C) and phosphorus (P) supporting Pycnopsyche assimilation and incorporation (growth). Litter-associated algal and fungal production rates additively increased with higher nutrient and light availability. Incorporation of microbial P did not differ across diets, except for higher incorporation efficiency of slower-turnover P on low-nutrient, shaded litter. On average, Pycnopsyche assimilated fungal C more efficiently than bacterial or algal C, and Pycnopsyche incorporated bacterial C more efficiently than algal or fungal C. Due to high litter fungal biomass, fungi supported 89.6–93.1% of Pycnopsyche C growth, compared to 0.2% to 3.6% supported by bacteria or algae. Overall, Pycnopsyche incorporated the most C in high nutrient and shaded litter. Our findings affirm others\u27 regarding autotroph-heterotroph microbial interactions and extend into the trophic transfer of microbial energy and nutrients through detrital food webs
Estimation of breed-specific heterosis effects for birth, weaning, and yearling weight in cattle
Heterosis, assumed proportional to expected breed heterozygosity, was calculated for 6834 individuals with birth, weaning and yearling weight records from Cycle VII and advanced generations of the U.S. Meat Animal Research Center (USMARC) Germplasm Evaluation (GPE) project. Breeds represented in these data included: Angus, Hereford, Red Angus, Charolais, Gelbvieh, Simmental, Limousin and Composite MARC III. Heterosis was further estimated by proportions of British × British (B × B), British × Continental (B × C) and Continental × Continental (C × C) crosses and by breed-specific combinations. Model 1 fitted fixed covariates for heterosis within biological types while Model 2 fitted random breed-specific combinations nested within the fixed biological type covariates. Direct heritability estimates (SE) for birth, weaning ,and yearling weight for Model 1 were 0.42 (0.04), 0.22 (0.03), and 0.39 (0.05), respectively. The direct heritability estimates (SE) of birth, weaning, and yearling weight for Model 2 were the same as Model 1, except yearling weight heritability was 0.38 (0.05). The B × B, B × C, and C × C heterosis estimates for birth weight were 0.47 (0.37), 0.75 (0.32), and 0.73 (0.54) kg, respectively. The B × B, B × C, and C × C heterosis estimates for weaning weight were 6.43 (1.80), 8.65 (1.54), and 5.86 (2.57) kg, respectively. Yearling weight estimates for B × B, B × C, and C × C heterosis were 17.59(3.06), 13.88 (2.63), and 9.12 (4.34) kg, respectively. Differences did exist among estimates of breed-specific heterosis for weaning and yearling weight, although the variance component associated with breed-specific heterosis was not significant. These results illustrate that there are differences in breed-specific heterosis and exploiting these differences can lead to varying levels of heterosis among mating plans
Functional genomics with a comprehensive library of transposon mutants for the sulfate-reducing bacterium Desulfovibrio alaskensis G20.
UnlabelledThe genomes of sulfate-reducing bacteria remain poorly characterized, largely due to a paucity of experimental data and genetic tools. To meet this challenge, we generated an archived library of 15,477 mapped transposon insertion mutants in the sulfate-reducing bacterium Desulfovibrio alaskensis G20. To demonstrate the utility of the individual mutants, we profiled gene expression in mutants of six regulatory genes and used these data, together with 1,313 high-confidence transcription start sites identified by tiling microarrays and transcriptome sequencing (5' RNA-Seq), to update the regulons of Fur and Rex and to confirm the predicted regulons of LysX, PhnF, PerR, and Dde_3000, a histidine kinase. In addition to enabling single mutant investigations, the D. alaskensis G20 transposon mutants also contain DNA bar codes, which enables the pooling and analysis of mutant fitness for thousands of strains simultaneously. Using two pools of mutants that represent insertions in 2,369 unique protein-coding genes, we demonstrate that the hypothetical gene Dde_3007 is required for methionine biosynthesis. Using comparative genomics, we propose that Dde_3007 performs a missing step in methionine biosynthesis by transferring a sulfur group to O-phosphohomoserine to form homocysteine. Additionally, we show that the entire choline utilization cluster is important for fitness in choline sulfate medium, which confirms that a functional microcompartment is required for choline oxidation. Finally, we demonstrate that Dde_3291, a MerR-like transcription factor, is a choline-dependent activator of the choline utilization cluster. Taken together, our data set and genetic resources provide a foundation for systems-level investigation of a poorly studied group of bacteria of environmental and industrial importance.ImportanceSulfate-reducing bacteria contribute to global nutrient cycles and are a nuisance for the petroleum industry. Despite their environmental and industrial significance, the genomes of sulfate-reducing bacteria remain poorly characterized. Here, we describe a genetic approach to fill gaps in our knowledge of sulfate-reducing bacteria. We generated a large collection of archived, transposon mutants in Desulfovibrio alaskensis G20 and used the phenotypes of these mutant strains to infer the function of genes involved in gene regulation, methionine biosynthesis, and choline utilization. Our findings and mutant resources will enable systematic investigations into gene function, energy generation, stress response, and metabolism for this important group of bacteria
A mathematical framework for critical transitions: normal forms, variance and applications
Critical transitions occur in a wide variety of applications including
mathematical biology, climate change, human physiology and economics. Therefore
it is highly desirable to find early-warning signs. We show that it is possible
to classify critical transitions by using bifurcation theory and normal forms
in the singular limit. Based on this elementary classification, we analyze
stochastic fluctuations and calculate scaling laws of the variance of
stochastic sample paths near critical transitions for fast subsystem
bifurcations up to codimension two. The theory is applied to several models:
the Stommel-Cessi box model for the thermohaline circulation from geoscience,
an epidemic-spreading model on an adaptive network, an activator-inhibitor
switch from systems biology, a predator-prey system from ecology and to the
Euler buckling problem from classical mechanics. For the Stommel-Cessi model we
compare different detrending techniques to calculate early-warning signs. In
the epidemics model we show that link densities could be better variables for
prediction than population densities. The activator-inhibitor switch
demonstrates effects in three time-scale systems and points out that excitable
cells and molecular units have information for subthreshold prediction. In the
predator-prey model explosive population growth near a codimension two
bifurcation is investigated and we show that early-warnings from normal forms
can be misleading in this context. In the biomechanical model we demonstrate
that early-warning signs for buckling depend crucially on the control strategy
near the instability which illustrates the effect of multiplicative noise.Comment: minor corrections to previous versio
Periphytic Algae Decouple Fungal Activity From Leaf Litter Decomposition Via Negative Priming
1. Well‐documented in terrestrial settings, priming effects describe stimulated heterotrophic microbial activity and decomposition of recalcitrant carbon by additions of labile carbon. In aquatic settings, algae produce labile exudates which may elicit priming during organic matter decomposition, yet the directions and mechanisms of aquatic priming effects remain poorly tested.
2. We tested algal‐induced priming during decomposition of two leaf species of contrasting recalcitrance, Liriodendron tulipifera and Quercus nigra, in experimental streams under light or dark conditions. We measured litter‐associated algal, bacterial, and fungal biomass and activity, stoichiometry, and litter decomposition rates over 43 days.
3. Light increased algal biomass and production rates, in turn increasing bacterial abundance 141%–733% and fungal production rates 20%–157%. Incubations with a photosynthesis inhibitor established that algal activity directly stimulated fungal production rates in the short term.
4. Algal‐stimulated fungal production rates on both leaf species were not coupled to long‐term increases in fungal biomass accrual or litter decomposition rates, which were 154%–157% and 164%–455% greater in the dark, respectively. The similar patterns on fast‐ vs. slow‐decomposing L. tulipifera and Q. nigra, respectively, indicated that substrate recalcitrance may not mediate priming strength or direction.
5. In this example of negative priming, periphytic algae decoupled fungal activity from decomposition, likely by providing labile carbon invested towards greater fungal growth and reproduction instead of recalcitrant carbon degradation. If common, algal‐induced negative priming could stimulate heterotrophy reliant on labile carbon yet suppress decomposition of recalcitrant carbon, modifying energy and nutrients available to upper trophic levels and enhancing organic carbon storage or export in well‐lit aquatic habitats
- …