9 research outputs found

    A non-standard analysis of a cultural icon: The case of Paul Halmos

    Full text link
    We examine Paul Halmos' comments on category theory, Dedekind cuts, devil worship, logic, and Robinson's infinitesimals. Halmos' scepticism about category theory derives from his philosophical position of naive set-theoretic realism. In the words of an MAA biography, Halmos thought that mathematics is "certainty" and "architecture" yet 20th century logic teaches us is that mathematics is full of uncertainty or more precisely incompleteness. If the term architecture meant to imply that mathematics is one great solid castle, then modern logic tends to teach us the opposite lession, namely that the castle is floating in midair. Halmos' realism tends to color his judgment of purely scientific aspects of logic and the way it is practiced and applied. He often expressed distaste for nonstandard models, and made a sustained effort to eliminate first-order logic, the logicians' concept of interpretation, and the syntactic vs semantic distinction. He felt that these were vague, and sought to replace them all by his polyadic algebra. Halmos claimed that Robinson's framework is "unnecessary" but Henson and Keisler argue that Robinson's framework allows one to dig deeper into set-theoretic resources than is common in Archimedean mathematics. This can potentially prove theorems not accessible by standard methods, undermining Halmos' criticisms. Keywords: Archimedean axiom; bridge between discrete and continuous mathematics; hyperreals; incomparable quantities; indispensability; infinity; mathematical realism; Robinson.Comment: 15 pages, to appear in Logica Universali

    Is Leibnizian calculus embeddable in first order logic?

    Get PDF
    To explore the extent of embeddability of Leibnizian infinitesimal calculus in first-order logic (FOL) and modern frameworks, we propose to set aside ontological issues and focus on pro- cedural questions. This would enable an account of Leibnizian procedures in a framework limited to FOL with a small number of additional ingredients such as the relation of infinite proximity. If, as we argue here, first order logic is indeed suitable for developing modern proxies for the inferential moves found in Leibnizian infinitesimal calculus, then modern infinitesimal frameworks are more appropriate to interpreting Leibnizian infinitesimal calculus than modern Weierstrassian ones

    Cauchy, infinitesimals and ghosts of departed quantifiers

    Get PDF
    Procedures relying on infinitesimals in Leibniz, Euler and Cauchy have been interpreted in both a Weierstrassian and Robinson's frameworks. The latter provides closer proxies for the procedures of the classical masters. Thus, Leibniz's distinction between assignable and inassignable numbers finds a proxy in the distinction between standard and nonstandard numbers in Robinson's framework, while Leibniz's law of homogeneity with the implied notion of equality up to negligible terms finds a mathematical formalisation in terms of standard part. It is hard to provide parallel formalisations in a Weierstrassian framework but scholars since Ishiguro have engaged in a quest for ghosts of departed quantifiers to provide a Weierstrassian account for Leibniz's infinitesimals. Euler similarly had notions of equality up to negligible terms, of which he distinguished two types: geometric and arithmetic. Euler routinely used product decompositions into a specific infinite number of factors, and used the binomial formula with an infinite exponent. Such procedures have immediate hyperfinite analogues in Robinson's framework, while in a Weierstrassian framework they can only be reinterpreted by means of paraphrases departing significantly from Euler's own presentation. Cauchy gives lucid definitions of continuity in terms of infinitesimals that find ready formalisations in Robinson's framework but scholars working in a Weierstrassian framework bend over backwards either to claim that Cauchy was vague or to engage in a quest for ghosts of departed quantifiers in his work. Cauchy's procedures in the context of his 1853 sum theorem (for series of continuous functions) are more readily understood from the viewpoint of Robinson's framework, where one can exploit tools such as the pointwise definition of the concept of uniform convergence. Keywords: historiography; infinitesimal; Latin model; butterfly modelComment: 45 pages, published in Mat. Stu

    Wprowadzenie do teorii zbiorów wewnetrznych E. Nelsona

    No full text
    An axiomatic approach to Non-standard Analysis by E. Nelsonis presented in a simplified form. The main aim of the article is strictly thepopularization of NSA, and not its foundations. No special preparation inmathematical logic is required from the reader but it is assumed that he(she) is familiar with elementary calculus and linear algebra
    corecore