51 research outputs found

    Techniques for Studying Decoding of Single Cell Dynamics

    Get PDF
    Cells must be able to interpret signals they encounter and reliably generate an appropriate response. It has long been known that the dynamics of transcription factor and kinase activation can play a crucial role in selecting an individual cell's response. The study of cellular dynamics has expanded dramatically in the last few years, with dynamics being discovered in novel pathways, new insights being revealed about the importance of dynamics, and technological improvements increasing the throughput and capabilities of single cell measurements. In this review, we highlight the important developments in this field, with a focus on the methods used to make new discoveries. We also include a discussion on improvements in methods for engineering and measuring single cell dynamics and responses. Finally, we will briefly highlight some of the many challenges and avenues of research that are still open

    Robustness of MEK-ERK Dynamics and Origins of Cell-to-Cell Variability in MAPK Signaling.

    Get PDF
    Cellular signaling processes can exhibit pronounced cell-to-cell variability in genetically identical cells. This affects how individual cells respond differentially to the same environmental stimulus. However, the origins of cell-to-cell variability in cellular signaling systems remain poorly understood. Here, we measure the dynamics of phosphorylated MEK and ERK across cell populations and quantify the levels of population heterogeneity over time using high-throughput image cytometry. We use a statistical modeling framework to show that extrinsic noise, particularly that from upstream MEK, is the dominant factor causing cell-to-cell variability in ERK phosphorylation, rather than stochasticity in the phosphorylation/dephosphorylation of ERK. We furthermore show that without extrinsic noise in the core module, variable (including noisy) signals would be faithfully reproduced downstream, but the within-module extrinsic variability distorts these signals and leads to a drastic reduction in the mutual information between incoming signal and ERK activity

    DeepCell Kiosk: scaling deep learning–enabled cellular image analysis with Kubernetes

    Get PDF
    Deep learning is transforming the analysis of biological images, but applying these models to large datasets remains challenging. Here we describe the DeepCell Kiosk, cloud-native software that dynamically scales deep learning workflows to accommodate large imaging datasets. To demonstrate the scalability and affordability of this software, we identified cell nuclei in 10⁶ 1-megapixel images in ~5.5 h for ~US250,withacostbelowUS250, with a cost below US100 achievable depending on cluster configuration. The DeepCell Kiosk can be downloaded at https://github.com/vanvalenlab/kiosk-console; a persistent deployment is available at https://deepcell.org/

    Accurate cell tracking and lineage construction in live-cell imaging experiments with deep learning

    Get PDF
    Live-cell imaging experiments have opened an exciting window into the behavior of living systems. While these experiments can produce rich data, the computational analysis of these datasets is challenging. Single-cell analysis requires that cells be accurately identified in each image and subsequently tracked over time. Increasingly, deep learning is being used to interpret microscopy image with single cell resolution. In this work, we apply deep learning to the problem of tracking single cells in live-cell imaging data. Using crowdsourcing and a human-in-the-loop approach to data annotation, we constructed a dataset of over 11,000 trajectories of cell nuclei that includes lineage information. Using this dataset, we successfully trained a deep learning model to perform cell tracking within a linear programming framework. Benchmarking tests demonstrate that our method achieves state-of-the-art performance on the task of cell tracking with respect to multiple accuracy metrics. Further, we show that our deep learning-based method generalizes to perform cell tracking for both fluorescent and brightfield images of the cell cytoplasm, despite having never been trained those data types. This enables analysis of live-cell imaging data collected across imaging modalities. A persistent cloud deployment of our cell tracker is available at http://www.deepcell.org

    Iroquois homeobox 3 regulates odontoblast proliferation and differentiation mediated by Wnt5a expression

    Get PDF
    Iroquois homeobox (Irx) genes are TALE-class homeobox genes that are evolutionarily conserved across species and have multiple critical cellular functions in fundamental tissue development processes. Previous studies have shown that Irxs genes are expressed during tooth development. However, the precise roles of genes in teeth remain unclear. Here, we demonstrated for the first time that Irx3 is an essential molecule for the proliferation and differentiation of odontoblasts. Using cDNA synthesized from postnatal day 1 (P1) tooth germs, we examined the expression of all Irx genes (Irx1-Irx6) by RT-PCR and found that all genes except Irx4 were expressed in the tooth tissue. Irx1-Irx3 a were expressed in the dental epithelial cell line M3H1 cells, while Irx3 and Irx5 were expressed in the dental mesenchymal cell line mDP cells. Only Irx3 was expressed in both undifferentiated cell lines. Immunostaining also revealed the presence of IRX3 in the dental epithelial cells and mesenchymal condensation. Inhibition of endogenous Irx3 by siRNA blocks the proliferation and differentiation of mDP cells. Wnt3a, Wnt5a, and Bmp4 are factors involved in odontoblast differentiation and were highly expressed in mDP cells by quantitative PCR analysis. Interestingly, the expression of Wnt5a (but not Wnt3a or Bmp4) was suppressed by Irx3 siRNA. These results suggest that Irx3 plays an essential role in part through the regulation of Wnt5a expression during odontoblast proliferation and differentiation

    DeepCell Kiosk: scaling deep learning–enabled cellular image analysis with Kubernetes

    Get PDF
    Deep learning is transforming the analysis of biological images, but applying these models to large datasets remains challenging. Here we describe the DeepCell Kiosk, cloud-native software that dynamically scales deep learning workflows to accommodate large imaging datasets. To demonstrate the scalability and affordability of this software, we identified cell nuclei in 10⁶ 1-megapixel images in ~5.5 h for ~US250,withacostbelowUS250, with a cost below US100 achievable depending on cluster configuration. The DeepCell Kiosk can be downloaded at https://github.com/vanvalenlab/kiosk-console; a persistent deployment is available at https://deepcell.org/

    Measuring Signaling and RNA-Seq in the Same Cell Links Gene Expression to Dynamic Patterns of NF-κB Activation

    Get PDF
    Signaling proteins display remarkable cell-to-cell heterogeneity in their dynamic responses to stimuli, but the consequences of this heterogeneity remain largely unknown. For instance, the contribution of the dynamics of the innate immune transcription factor nuclear factor κB (NF-κB) to gene expression output is disputed. Here we explore these questions by integrating live-cell imaging approaches with single-cell sequencing technologies. We used this approach to measure both the dynamics of lipopolysaccharide-induced NF-κB activation and the global transcriptional response in the same individual cell. Our results identify multiple, distinct cytokine expression patterns that are correlated with NF-κB activation dynamics, establishing a functional role for NF-κB dynamics in determining cellular phenotypes. Applications of this approach to other model systems and single-cell sequencing technologies have significant potential for discovery, as it is now possible to trace cellular behavior from the initial stimulus, through the signaling pathways, down to genome-wide changes in gene expression, all inside of a single cell

    Two-way habitat use between reefs and open ocean in adult greater amberjack: evidence from biologging data

    Get PDF
    We investigated the relationships between vertical movements and both oceanographic features and physiological factors in greater amberjack Seriola dumerili, which is a reef-associated predator in the East China Sea. S. dumerili in the coastal waters of eastern Taiwan were equipped with archival tags or pop-up satellite archival tags that recorded depth and temperature, resulting in a dataset covering a total of 1331 d from 12 individuals. To classify the vertical movement patterns of S. dumerili, we performed a hierarchical cluster analysis for the depth profile. We observed multiple vertical movement patterns. Around topographic features, S. dumerili showed short-step dives (averaging < 35 m) during both the daytime and nighttime. In contrast, S. dumerili in offshore areas showed diel vertical movements. S. dumerili occasionally performed frequent dives to approximately 150 m throughout the day. These movements may be related to foraging behaviors associated with changes in water depth. We further analyzed the response of the peri-toneal cavity temperature to variations in the ambient temperature in 7 S. dumerili with archival tags. The peritoneal cavity temperatures fluctuated according to the ambient temperature changes, indicating that the vertical movement of S. dumerili is limited by physiological con-straints for the maintenance of body temperature. Together, our results indicate that the vertical movement of S. dumerili may be affected by the trade-off between foraging and thermoregulation

    Accurate cell tracking and lineage construction in live-cell imaging experiments with deep learning

    Get PDF
    Live-cell imaging experiments have opened an exciting window into the behavior of living systems. While these experiments can produce rich data, the computational analysis of these datasets is challenging. Single-cell analysis requires that cells be accurately identified in each image and subsequently tracked over time. Increasingly, deep learning is being used to interpret microscopy image with single cell resolution. In this work, we apply deep learning to the problem of tracking single cells in live-cell imaging data. Using crowdsourcing and a human-in-the-loop approach to data annotation, we constructed a dataset of over 11,000 trajectories of cell nuclei that includes lineage information. Using this dataset, we successfully trained a deep learning model to perform cell tracking within a linear programming framework. Benchmarking tests demonstrate that our method achieves state-of-the-art performance on the task of cell tracking with respect to multiple accuracy metrics. Further, we show that our deep learning-based method generalizes to perform cell tracking for both fluorescent and brightfield images of the cell cytoplasm, despite having never been trained those data types. This enables analysis of live-cell imaging data collected across imaging modalities. A persistent cloud deployment of our cell tracker is available at http://www.deepcell.org

    A novel biomarker TERTmRNA is applicable for early detection of hepatoma

    Get PDF
    <p>Abstract</p> <p>Backgrounds</p> <p>We previously reported a highly sensitive method for serum human telomerase reverse transcriptase (hTERT) mRNA for hepatocellular carcinoma (HCC). α-fetoprotein (AFP) and des-γ-carboxy prothrombin (DCP) are good markers for HCC. In this study, we verified the significance of hTERTmRNA in a large scale multi-centered trial, collating quantified values with clinical course.</p> <p>Methods</p> <p>In 638 subjects including 303 patients with HCC, 89 with chronic hepatitis (CH), 45 with liver cirrhosis (LC) and 201 healthy individuals, we quantified serum hTERTmRNA using the real-time RT-PCR. We examined its sensitivity and specificity in HCC diagnosis, clinical significance, ROC curve analysis in comparison with other tumor markers, and its correlations with the clinical parameters using Pearson relative test and multivariate analyses. Furthermore, we performed a prospective and comparative study to observe the change of biomarkers, including hTERTmRNA in HCC patients receiving anti-cancer therapies.</p> <p>Results</p> <p>hTERTmRNA was demonstrated to be independently correlated with clinical parameters; tumor size and tumor differentiation (P < 0.001, each). The sensitivity/specificity of hTERTmRNA in HCC diagnosis showed 90.2%/85.4% for hTERT. hTERTmRNA proved to be superior to AFP, AFP-L3, and DCP in the diagnosis and underwent an indisputable change in response to therapy. The detection rate of small HCC by hTERTmRNA was superior to the other markers.</p> <p>Conclusions</p> <p>hTERTmRNA is superior to conventional tumor markers in the diagnosis and recurrence of HCC at an early stage.</p
    corecore