14 research outputs found
Maximally-localized Wannier functions for entangled energy bands
We present a method for obtaining well-localized Wannier-like functions (WFs)
for energy bands that are attached to or mixed with other bands. The present
scheme removes the limitation of the usual maximally-localized WFs method (N.
Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997)) that the bands of
interest should form an isolated group, separated by gaps from higher and lower
bands everywhere in the Brillouin zone. An energy window encompassing N bands
of interest is specified by the user, and the algorithm then proceeds to
disentangle these from the remaining bands inside the window by filtering out
an optimally connected N-dimensional subspace. This is achieved by minimizing a
functional that measures the subspace dispersion across the Brillouin zone. The
maximally-localized WFs for the optimal subspace are then obtained via the
algorithm of Marzari and Vanderbilt. The method, which functions as a
postprocessing step using the output of conventional electronic-structure
codes, is applied to the s and d bands of copper, and to the valence and
low-lying conduction bands of silicon. For the low-lying nearly-free-electron
bands of copper we find WFs which are centered at the tetrahedral interstitial
sites, suggesting an alternative tight-binding parametrization.Comment: 13 pages, with 9 postscript figures embedded. Uses REVTEX and epsf
macro
Physical origin of the buckling in CuO: Electron-phonon coupling and Raman spectra
It is shown theoretically that the buckling of the CuO planes in
certain cuprate systems can be explained in terms of an electric field across
the planes which originates from different valences of atoms above and below
the plane. This field results also in a strong coupling of the Raman-active
out-of-phase vibration of the oxygen atoms ( mode) to the electronic
charge transfer between the two oxygens in the CuO plane. Consequently,
the electric field can be deduced from the Fano-type line shape of the
phonon. Using the electric field estimated from the electron-phonon coupling
the amplitude of the buckling is calculated and found to be in good agreement
with the structural data. Direct experimental support for the idea proposed is
obtained in studies of YBaCuO and
BiSr(CaY)CuO with different oxygen and
yttrium doping, respectively, including antiferromagnetic samples. In the
latter compound, symmetry breaking by replacing Ca partially by Y leads to an
enhancement of the electron-phonon coupling by an order of magnitude.Comment: 12 pages, 4 figures, and 1 tabl