232 research outputs found

    Improvement of attention span and reaction time with hyperbaric oxygen treatment in patients with toxic injury due to mold exposure

    Get PDF
    It is, by now, well established that mold toxins (mycotoxins) can cause significant adverse health effects. In this study, 15 subjects who developed an attention deficit disorder (ADD) and slowing of reaction time at the time of exposure to mold toxins were identified. Deficits in attention span and reaction time were documented not only by taking a careful history, but also by performing a Test of Variables of Attention (TOVA). The TOVA test provides an objective measure of these two variables. It was found that mold-exposed subjects show statistically significant decreases in attention span and significant increases in reaction time to stimuli compared to controls. After ten sessions of hyperbaric oxygen treatment (HBOT), a statistically significant improvement was seen in both measures. This preliminary study suggests promising outcomes in treating mold-exposed patients with hyperbaric oxygen

    Therapeutic effect of hyperbaric oxygen in psoriasis vulgaris: two case reports and a review of the literature

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Psoriasis is an inflammatory and immunological cutaneous disease. The high morbidity in patients with psoriasis results from severe clinical manifestations and/or adverse effects of treatment. The Undersea and Hyperbaric Medical Society and Federal Medicare and Medicaid Services have approved the use of hyperbaric oxygen (HBO<sub>2</sub>) for more than 15 indications, including wound healing, infections and late effects of radiation, which are largely unresponsive to conventional treatments. Accumulated data show that HBO<sub>2</sub> has anti-inflammatory effects and other positive influences on the immune system, making it a rational treatment in the management of psoriasis plaques and arthritis.</p> <p>Case presentation</p> <p>We present the cases of two patients with long histories of psoriasis vulgarus who exhibited marked improvement with use of HBO<sub>2.</sub> The first patient was 40 years old and had pustular psoriasis and psoriatic arthritis. He was treated with six sessions of HBO<sub>2</sub> (at 2.8 atmospheres of pressure for 60 minutes), which successfully controlled his symptoms. At the 18-month post-treatment follow up, the patient exhibited complete remission of psoriasis and marked improvement in psoriatic arthritis without medication. The second patient was 55 years old with extensive psoriatic lesions, and exhibited marked improvement within 15 sessions of HBO<sub>2</sub>. No adverse effects of HBO<sub>2</sub> were identified.</p> <p>Conclusions</p> <p>HBO<sub>2</sub> may possess potential therapeutic efficacy in the management of psoriasis. We outline the pathogenesis of psoriasis and the selective anti-inflammatory and immunosuppressive effects of HBO<sub>2</sub>. We hope that this will provide a basis for elucidating the mechanisms of action and consequently pave the way for further controlled studies.</p

    Baculovirus Infection Triggers a Shift from Amino Acid Starvation-Induced Autophagy to Apoptosis

    Get PDF
    Autophagy plays a central role in regulating important cellular functions such as cell survival during starvation and control of infectious pathogens. On the other hand, many pathogens have evolved mechanisms of inhibition of autophagy such as blockage of the formation of autophagosomes or the fusion of autophagosomes with lysosomes. Baculoviruses are important insect pathogens for pest control, and autophagy activity increases significantly during insect metamorphosis. However, it is not clear whether baculovirus infection has effects on the increased autophagy. In the present study, we investigated the effects of the Autographa californica nucleopolyhedrovirus (AcMNPV) infection on autophagy in SL-HP cell line from Spodoptera litura induced under amino acid deprivation. The results revealed that AcMNPV infection did not inhibit autophagy but triggered apoptosis under starvation pressure. In the early stage of infection under starvation, mitochondrial dysfunction was detected, suggesting the organelles might be involved in cell apoptosis. The semi-quantitative PCR assay revealed that the expression of both p35 and ie-1 genes of AcMNPV had no significant difference between the starved and unstarved SL-HP cells. The western blot analysis showed that no cleavage of endogenous Atg6 occurred during the process of apoptosis in SL-HP cells. These data demonstrated that some permissive insect cells may defend baculovirus infection via apoptosis under starvation and apoptosis is independent of the cleavage of Atg6 in SL-HP cells

    HCMV Targets the Metabolic Stress Response through Activation of AMPK Whose Activity Is Important for Viral Replication

    Get PDF
    Human Cytomegalovirus (HCMV) infection induces several metabolic activities that have been found to be important for viral replication. The cellular AMP-activated protein kinase (AMPK) is a metabolic stress response kinase that regulates both energy-producing catabolic processes and energy-consuming anabolic processes. Here we explore the role AMPK plays in generating an environment conducive to HCMV replication. We find that HCMV infection induces AMPK activity, resulting in the phosphorylation and increased abundance of several targets downstream of activated AMPK. Pharmacological and RNA-based inhibition of AMPK blocked the glycolytic activation induced by HCMV-infection, but had little impact on the glycolytic pathway of uninfected cells. Furthermore, inhibition of AMPK severely attenuated HCMV replication suggesting that AMPK is an important cellular factor for HCMV replication. Inhibition of AMPK attenuated early and late gene expression as well as viral DNA synthesis, but had no detectable impact on immediate-early gene expression, suggesting that AMPK activity is important at the immediate early to early transition of viral gene expression. Lastly, we find that inhibition of the Ca2+-calmodulin-dependent kinase kinase (CaMKK), a kinase known to activate AMPK, blocks HCMV-mediated AMPK activation. The combined data suggest a model in which HCMV activates AMPK through CaMKK, and depends on their activation for high titer replication, likely through induction of a metabolic environment conducive to viral replication

    Cell-to-cell transmission of retroviruses: Innate immunity and interferon-induced restriction factors

    Get PDF
    It has been known for some time that retroviruses can disseminate between immune cells either by conventional cell-free transmission or by directed cell-to-cell spread. Over the past few years there has been increasing interest in how retroviruses may use cell-to-cell spread to promote more rapid infection kinetics and circumvent humoral immunity. Effective humoral immune responses are intimately linked with innate immunity and the interplay between retroviruses and innate immunity is a rapidly expanding area of research that has been advanced considerably by the identification of cellular restriction factors that provide barriers to retroviral infection. The effect of innate immunity and restriction factors on retroviral cell-to-cell spread has been comparatively little studied; however recent work suggests this maybe changing. Here I will review some recent advances in what is a budding area of retroviral research

    AMP-Activated Kinase Restricts Rift Valley Fever Virus Infection by Inhibiting Fatty Acid Synthesis

    Get PDF
    The cell intrinsic innate immune responses provide a first line of defense against viral infection, and often function by targeting cellular pathways usurped by the virus during infection. In particular, many viruses manipulate cellular lipids to form complex structures required for viral replication, many of which are dependent on de novo fatty acid synthesis. We found that the energy regulator AMPK, which potently inhibits fatty acid synthesis, restricts infection of the Bunyavirus, Rift Valley Fever Virus (RVFV), an important re-emerging arthropod-borne human pathogen for which there are no effective vaccines or therapeutics. We show restriction of RVFV both by AMPK and its upstream activator LKB1, indicating an antiviral role for this signaling pathway. Furthermore, we found that AMPK is activated during RVFV infection, leading to the phosphorylation and inhibition of acetyl-CoA carboxylase, the first rate-limiting enzyme in fatty acid synthesis. Activating AMPK pharmacologically both restricted infection and reduced lipid levels. This restriction could be bypassed by treatment with the fatty acid palmitate, demonstrating that AMPK restricts RVFV infection through its inhibition of fatty acid biosynthesis. Lastly, we found that this pathway plays a broad role in antiviral defense since additional viruses from disparate families were also restricted by AMPK and LKB1. Therefore, AMPK is an important component of the cell intrinsic immune response that restricts infection through a novel mechanism involving the inhibition of fatty acid metabolism

    AMPK in Pathogens

    Get PDF
    During host–pathogen interactions, a complex web of events is crucial for the outcome of infection. Pathogen recognition triggers powerful cellular signaling events that is translated into the induction and maintenance of innate and adaptive host immunity against infection. In opposition, pathogens employ active mechanisms to manipulate host cell regulatory pathways toward their proliferation and survival. Among these, subversion of host cell energy metabolism by pathogens is currently recognized to play an important role in microbial growth and persistence. Extensive studies have documented the role of AMP-activated protein kinase (AMPK) signaling, a central cellular hub involved in the regulation of energy homeostasis, in host–pathogen interactions. Here, we highlight the most recent advances detailing how pathogens hijack cellular metabolism by suppressing or increasing the activity of the host energy sensor AMPK. We also address the role of lower eukaryote AMPK orthologues in the adaptive process to the host microenvironment and their contribution for pathogen survival, differentiation, and growth. Finally, we review the effects of pharmacological or genetic AMPK modulation on pathogen growth and persistence.CIHR -Canadian Institutes of Health Researc

    Interferon-alpha-induced mTOR activation is an anti-hepatitis C virus signal via the phosphatidylinositol 3-kinase-Akt-independent pathway.

    Get PDF
    OBJECT: The interferon-induced Jak-STAT signal alone is not sufficient to explain all the biological effects of IFN. The PI3-K pathways have emerged as a critical additional component of IFN-induced signaling. This study attempted to clarify that relationship between IFN-induced PI3-K-Akt-mTOR activity and anti-viral action. RESULT: When the human normal hepatocyte derived cell line was treated with rapamycin (rapa) before accretion of IFN-alpha, tyrosine phosphorylation of STAT-1 was diminished. Pretreatment of rapa had an inhibitory effect on the IFN-alpha-induced expression of PKR and p48 in a dose dependent manner. Rapa inhibited the IFN-alpha inducible IFN-stimulated regulatory element luciferase activity in a dose-dependent manner. However, wortmannin, LY294002 and Akt inhibitor did not influence IFN-alpha inducible luciferase activity. To examine the effect of PI3-K-Akt-mTOR on the anti-HCV action of IFN-alpha, the full-length HCV replication system, OR6 cells were used. The pretreatment of rapa attenuated its anti-HCV replication effect in comparison to IFN-alpha alone, whereas the pretreatment with PI3-K inhibitors, wortmannin and LY294002 and Akt inhibitor did not influence IFN-induced anti-HCV replication. CONCLUSION: IFN-induced mTOR activity, independent of PI3K and Akt, is the critical factor for its anti-HCV activity. Jak independent mTOR activity involved STAT-1 phosphorylation and nuclear location, and then PKR is expressed in hepatocytes

    Dealing with stress: Human cytomegalovirus maintains translation in cells under adverse conditions

    No full text
    The Human Cytomegalovirus (HCMV) requires its host cell\u27s translational machinery to produce its proteins. Mammalian target of rapamycin (mTOR) kinase-mediated signaling regulates translation initiation so that it occurs only when nutrient and energy levels are sufficient to support protein production. HCMV-induced increases in cellular processes and metabolism can deplete resources enough that the infected cell initiates stress signaling. Stress signaling inhibits mTOR mediated-signaling, and thus translation, which would impede HCMV protein production and growth. The experiments described herein evaluate the ability of HCMV to translate proteins and grow under conditions that simulate the inhibitory affects of stress on mTOR-mediated signaling. MTOR associates in two complexes distinguishable by their functions and sensitivities to the drug rapamycin. The rapamycin-sensitive Raptor complex regulates translation while the rapamycin-insensitive Rictor complex regulates Akt kinase activity. The Raptor complex promotes cap-dependent translation by phosphorylating and inactivating the eIF4E binding protein (4E-BP). This allows eIF4E and the capped mRNA to which it is bound to associate in the eIF4F complex which delivers mRNAs to ribosomes for their translation. The data show HCMV activates both mTOR complexes and promotes eIF4F formation under normal infection conditions. Furthermore, they show that HCMV can adapt both upstream regulators and downstream targets of the Raptor complex to ensure that the translational machinery remains active in the presence of stress or other conditions that normally inhibit its activity. Raptor and rictor shRNA-mediated depletion studies show that rictor is more significant than raptor for both HCMV growth and the inhibitory effects of rapamycin on HCMV growth. Interestingly, HCMV appears to change the substrate specificity of the Rictor complex such that it can phosphorylate the two Raptor complex targets, 4E-BP and p70S6K, in infected cells. HCMV also makes the Rictor complex rapamycin sensitive towards the hyperphosphorylation of both targets, and the Raptor complex rapamycin-insensitive towards 4E-BP phosphorylation. In toto, the data show that HCMV significantly adapts mTOR-mediated signaling such that translation and virus growth proceed under normal and cellular stress conditions
    • …
    corecore