5 research outputs found

    A novel-type luciferin from Siberian luminous earthworm Fridericia heliota : structure elucidation by spectral studies and total synthesis

    Get PDF
    Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of Wiley-VCH Verlag GmbH & Co for personal use, not for redistribution. The definitive version was published in Angewandte Chemie International Edition 53 (2014): 5566–5568, doi:10.1002/anie.201400529.We report structure elucidation and synthesis of the luciferin from the recently discovered luminous earthworm Fridericia heliota. This luciferin represents a key component of a novel ATP-dependent bioluminescence system. The UV, fluorescence, NMR and HRMS spectral studies were performed on 5 mkg of the isolated substance, and gave four isomeric structures, conforming with spectral data. These isomers were chemically synthesized and one of them was found to produce light in the reaction with a protein extract from Fridericia. The novel luciferin was found to have an unusual deeply modified peptidic nature, implying an unprecedented mechanism of action.We acknowledge support from the Program of the Government of the Russian Federation “Measures to attract leading scientists to Russian educational institutions” (grant no. 11. G34.31.0058), the programs MCB RAS, President of the Russian Federation “Leading science school” (grant 3951.2012.4) and the Russian Foundation for Basic Research (grant 14-03-01015). B.M.S. was supported by a stipend from the Program of the President of the Russian Federation.2015-04-1

    Meta-CF<sub>3</sub>-Substituted Analogues of the GFP Chromophore with Remarkable Solvatochromism

    No full text
    In this work, we have shown that the introduction of a trifluoromethyl group into the me-ta-position of arylidene imidazolones (GFP chromophore core) leads to a dramatic increase in their fluorescence in nonpolar and aprotic media. The presence of a pronounced solvent-dependent gradation of fluorescence intensity makes it possible to use these substances as fluorescent polarity sensors. In particular, we showed that one of the created compounds could be used for selective labeling of the endoplasmic reticulum of living cells

    A Combination of Library Screening and Rational Mutagenesis Expands the Available Color Palette of the Smallest Fluorogen-Activating Protein Tag nanoFAST

    No full text
    NanoFAST is the smallest fluorogen-activating protein, consisting of only 98 amino acids, used as a genetically encoded fluorescent tag. Previously, only a single fluorogen with an orange color was revealed for this protein. In the present paper, using rational mutagenesis and in vitro screening of fluorogens libraries, we expanded the color palette of this tag. We discovered that E46Q is one of the key substitutions enabling the range of possible fluorogens to be expanded. The introduction of this and several other substitutions has made it possible to use not only orange but also red and green fluorogens with the modified protein

    Sevanol and Its Analogues: Chemical Synthesis, Biological Effects and Molecular Docking

    No full text
    Among acid-sensing ion channels (ASICs), ASIC1a and ASIC3 subunits are the most widespread and prevalent in physiological and pathophysiological conditions. They participate in synaptic plasticity, learning and memory, as well as the perception of inflammatory and neurological pain, making these channels attractive pharmacological targets. Sevanol, a natural lignan isolated from Thymus armeniacus, inhibits the activity of ASIC1a and ASIC3 isoforms, and has a significant analgesic and anti-inflammatory effect. In this work, we described the efficient chemical synthesis scheme of sevanol and its analogues, which allows us to analyze the structure&ndash;activity relationships of the different parts of this molecule. We found that the inhibitory activity of sevanol and its analogues on ASIC1a and ASIC3 channels depends on the number and availability of the carboxyl groups of the molecule. At the structural level, we predicted the presence of a sevanol binding site based on the presence of molecular docking in the central vestibule of the ASIC1a channel. We predicted that this site could also be occupied in part by the FRRF-amide peptide, and the competition assay of sevanol with this peptide confirmed this prediction. The intravenous (i.v.), intranasal (i.n.) and, especially, oral (p.o.) administration of synthetic sevanol in animal models produced significant analgesic and anti-inflammatory effects. Both non-invasive methods of sevanol administration (i.n. and p.o.) showed greater efficacy than the invasive (i.v.) method, thus opening new horizons for medicinal uses of sevanol
    corecore