7 research outputs found
The Dependence of InAs/InAsSb Superlattice Detectors’ Spectral Response on Molecular Beam Epitaxy Growth Temperature
In this paper, we report on the influence of molecular beam epitaxial (MBE) growth temperature on the spectral response of the long-wavelength infrared radiation (LWIR), three-stage thermoelectrically (TE) cooled (T = 210, 230 K) InAs/InAsSb type-II superlattice (T2SL)-based detectors grown on the GaSb/GaAs buffer layers/substrates. Likewise, antimony (Sb) composition and the superlattice (SL) period could be used for spectral response selection. The presented results indicate that the growth temperature affects the 50% cut-off (λ50%cut-off) of the fabricated devices and could be used for operating wavelength tunning. Assuming constant Sb composition and T2SL period during MBE process, the growth temperature is presented to influence λ50%cut-off covering entire LWIR (e.g., temperature growth change within the range of 400–450 °C contributes to the λ50%cut-off ~ 11.6–8.3 μm estimated for operating temperature, T = 230 K). An increase in temperature growth makes a blueshift of the λ50%cut-off, and this is postulated to be a consequence of a modification of the SL interfaces. These results show an approach to the T2SL InAs/InAsSb deposition optimization by the growth temperature in terms of the spectral response, without influencing the T2SLs’ structural properties (Sb composition, SL period)
Barrier in the valence band in the nBn detector with an active layer from the type-II superlattice
Numerical analysis of the dark current (Id) in the type-II superlattice (T2SL) barrier (nBn) detector operated at high temperatures was presented. Theoretical calculations were compared with the experimental results for the nBn detector with the absorber and contact layers in an InAs/InAsSb superlattice separated AlAsSb barrier. Detector structure was grown using MBE technique on a GaAs substrate. The k·p model was used to determine the first electron band and the first heavy and light hole bands in T2SL, as well as to calculate the absorption coefficient. The paper presents the effect of the additional hole barrier on electrical and optical parameters of the nBn structure. According to the principle of the nBn detector operation, the electrons barrier is to prevent the current flow from the contact layer to the absorber, while the holes barrier should be low enough to ensure the flow of optically generated carriers. The barrier height in the valence band (VB) was adjusted by changing the electron affinity of a ternary AlAsSb material. Results of numerical calculations similar to the experimental data were obtained, assuming the presence of a high barrier in VB which, at the same time, lowered the detector current responsivity
Rigorous optical modelling of long-wavelength infrared photodetector with 2D subwavelength hole array in gold film
The quantum efficiency of an InAs/InAsSb type-II superlattice (T2SL) high operating temperature (HOT) long-wavelength infrared (LWIR) photodetector may be significantly improved by integrating a two-dimensional subwavelength hole array in a metallic film (2DSHA) with the detector heterostructure. The role of the metallic grating is to couple incident radiation into surface plasmon polariton (SPP) modes whose field overlaps the absorber region. Plasmon-enhanced infrared photodetectors have been recently demonstrated and are the subject of intensive research. Optical modelling of the three-dimensional detector structure with subwavelength metallic components is challenging, especially since its operation depends on evanescent wave coupling. Our modelling approach combines the 3D finite-difference time-domain method (FDTD) and the rigorous coupled wave analysis (RCWA) with a proposed adaptive data-point selection for calculation time reduction. We demonstrate that the 2DSHA-based detector supports SPPs in the Sommerfeld-Zenneck regime and waveguide modes that both enhance absorption in the active layer
Plasmon-enhanced high operating temperature infrared photodetectors
Plasmonic enhancement has a great potential for performance improvement of high operating temperature (HOT) photodetectors, especially those optimized for long-wavelength infrared (LWIR). Conventional HOT photodetectors exhibit poor quantum efficiency (QE) due to short carrier diffusion lengths of narrow bandgap semiconductors and relatively low absorption coefficients within the LWIR range. Plasmon-driven subwavelength light confinement enables high absorption even in a very thin absorber that provides efficient carrier collection, boosting the detector QE. We propose a photovoltaic detector equipped with a two-dimensional subwavelength hole array (2DSHA) in gold metallization on InAs/InAsSb type-II superlattice (T2SL) heterostructure. Our numerical study utilizing the finite-difference time-domain (FDTD) method predicts five times increased absorption in comparison with a conventional, back-side illuminated device. The simulated behavior of the plasmonic structure was confirmed experimentally by transmittance measurements, which revealed resonant features corresponding to various plasmonic modes
Multi-technique characterisation of InAs-on-GaAs wafers with circular defect pattern
The article presents the results of diameter mapping for circular-symmetric disturbance of homogeneity of epitaxially grown InAs (100) layers on GaAs substrates. The set of acceptors (beryllium) doped InAs epilayers was studied in order to evaluate the impact of Be doping on the 2-inch InAs-on-GaAs wafers quality. During the initial identification of size and shape of the circular pattern, non-destructive optical techniques were used, showing a 100% difference in average roughness between the wafer centre and its outer part. On the other hand, no volumetric (bulk) differences are detectable using Raman spectroscopy and highresolution X-ray diffraction. The correlation between Be doping level and circular defect pattern surface area has been found