15 research outputs found

    BODIPY dyes for use in nonlinear optics and optical sensing

    Get PDF
    Thesis (PhD)--Rhodes University, Faculty of Science, Department of Chemistry, 2020

    Synthesis and physicochemical evaluation of a series of boron dipyrromethene dye derivatives for potential utility in antimicrobial photodynamic therapy and nonlinear optics

    Get PDF
    A series of new BODIPY dye derivatives have been synthesized and characterized using various characterization tools such as 1H-NMR, MALDI-TOF mass spectrometry, FT-IR, UV-visible spectrophotometry and elemental analysis. The aniline-substituted BODIPY derivative was further coordinated with gold nanorods and the characterization was achieved by transmission electron microscopy (TEM), X-ray diffractometry (XRD) and X-ray photoelectron spectroscopy (XPS).In addition to this dye, quaternized BODIPY dyes were also synthesized and investigated for their potential utility as photosentitizers in antimicrobial photodynamic therapy (APDT).BODIPY dyes with pyrene substituted styryl groups were embedded in polymer thin film using poly(bisphenol A carbonate) (PBC) to study their optical limiting properties. The optical limiting values of these BODIPY dyes once embedded in thin films were found to be greatly improved and the limiting intensityof each film was well below the maximum threshold which is set to be 0.95 J.cm-². The physicochemical properties and NLO parameters of all of the synthesized dyes were investigated

    Optical limiting properties of 3, 5-diphenyldibenzo-azaBODIPY at 532 nm

    Get PDF
    Optical limiting properties of 3,5-diphenyldibenzo-azaBODIPY were investigated by using the z-scan technique at 532 nm in the nanosecond pulse range and a strong reverse saturable absorption (RSA) response was observed, which can be readily attributed to a two-photon absorption (TPA) assisted excited state absorption (ESA) mechanism in the singlet manifold based on a consideration of the other photophysical properties. The effect of solvent and incorporation into polymer thin films has been investigated in depth. The results indicate that the selection of solvents that enhance the population of the S1 excited state on the nanosecond timescale or embedding the azaBODIPY dye into polymer thin films significantly improves the optical limiting properties

    Optical limiting properties of 2, 6-dibromo-3, 5-distyrylBODIPY dyes at 532 nm

    Get PDF
    Optical limiting properties of 2,6-dibromo-3,5-distyrylBODIPY dyes were investigated by using the z-scan technique at 532 nm in the nanosecond pulse range. A strong reverse saturable absorption response was observed even in solution, which suggests that compounds of this type are potentially suitable for use in optical limiting applications

    Synthesis and photophysicochemical properties of BODIPY dye functionalized gold nanorods for use in antimicrobial photodynamic therapy

    Get PDF
    A series of boron dipyrromethene (BODIPY) dyes with properties that are ideal for a good photosensitizer have been prepared. Functionalization with bromine atoms and attachment to gold nanoparticles through a meso-aniline group results in high singlet oxygen quantum yields and low fluorescent quantum yields. Molecular modelling was used to analyze trends in the MO energies of various brominated aniline BODIPY dyes

    Optical Limiting Properties of 3, 5-Dithienylenevinylene BODIPY Dyes at 532 nm

    Get PDF
    The optical limiting properties of a series of near infrared absorbing 3,5-dithienylenevinylene BODIPY (borondipyrromethene) dyes (1–3) that contain donor and acceptor moieties in their p-conjugation systems were studied by using the z-scan technique at 532 nm in the nanosecond pulse range. A strong reverse saturable absorption response was observed when the compounds are embedded into poly(bisphenol carbonate A) polymer thin films, which demonstrates that BODIPY dyes with this type of structure are suitable for use in optical limiting applications

    Synthesis, characterization and photodynamic therapy properties of an octa-4-tert-butylphenoxy-substituted phosphorus (V) triazatetrabenzcorrole

    Get PDF
    A novel octa-4-tert-butylphenoxy-substituted phosphorus(V) triazatetrabenzcorrole (PVTBC), has been synthesized and characterized by MALDI-TOF MS and NMR, FT-IR and MCD spectroscopy. The fluorescence emission spectrum was used to determine the fluorescence quantum yield and the quantum yield for singlet oxygen generation was calculated by using 1,3-diphenylisobenzofuran as a scavenger. The photocytoxicity against U87MG cells was measured. The results indicated that PVTBC is potentially useful as an NIR region photosensitizer for photodynamic therapy (PDT)

    Aza boron-pyridyl-isoindoline analogues

    Get PDF
    Several aza boron-pyridyl-isoindoline analogues are synthesized through a facile and scale-up two step reaction using 1,2-naphthalenedicarbonitrile as a starting material. These analogues show broad envelopes of intense vibrational bands in the absorption spectra with moderate fluorescence quantum yields in solution and the solid-state. An analysis of the structure–property relationships is described based on X-ray crystallography, optical spectroscopy, and theoretical calculations

    Synthesis, Characterization, and Electronic Structures of Porphyrins Fused with Polycyclic Aromatic Ring Systems

    Get PDF
    A series of porphyrins fused with acenaphthylene, phenanthroline, and benzofluoranthene polycyclic aromatic rings were prepared by means of a 3+1 porphyrin synthesis approach and subsequent retro-Diels–Alder reaction of bicyclo[2.2.2]octadiene-fused precursors. Analysis of the magnetic circular dichroism spectra and the results of time-dependent DFT calculations are used to identify the reasons for the trends observed in the wavelengths and relative intensities of the Q bands of the products. Michl's perimeter model is used as a conceptual framework to explain the changes in the relative energies of the frontier π-molecular orbitals

    NIR Absorbing AzaBODIPY Dyes for pH Sensing

    No full text
    Two near-infrared (NIR) absorbing di(thien-2-nyl)-di(dimethylanilino)azaBODIPY dyes 2a and 2b were synthesized and characterized that differ depending on whether the dimethylaniline substituents are introduced at the 3,5- or 1,7-positions of the azaBODIPY core. The main spectral bands lie at 824 and 790 nm, respectively, in CH2Cl2. The effect of substituent position on the photophysical and pH sensing properties was analyzed through a comparison of the optical properties with the results of time-dependent density functional theory (TD-DFT) calculations. Protonation of the dimethylamino nitrogen atoms eliminates the intramolecular charge transfer properties of these compounds, and this results in a marked blue-shift of the main absorption bands to 696 and 730 nm, respectively, in CH2Cl2, and a fluorescence “turn-on” effect in the NIR region. The pH dependence studies reveal that the pKa values of the non-protonated 2a and 2b molecules are ca. 6.9 (±0.05) and 7.3 (±0.05), respectively, while that of the monoprotonated species for both dyes is ca. 1.4 (±0.05) making them potentially suitable for use as colorimetric pH indicators under highly acidic conditions
    corecore