478 research outputs found
Analysis of the goldfish Carassius auratus olfactory epithelium transcriptome reveals the presence of numerous non-olfactory GPCR and putative receptors for progestin pheromones
The goldfish (Carassius auratus) uses steroids and prostaglandins as pheromone cues at different stages of the reproductive cycle to facilitate spawning synchronization. Steroid progestin pheromone binding has been detected in goldfish olfactory membranes but the receptors responsible for this specific binding remain unknown. In order to shed some light on the olfactory epithelium transcriptome and search for possible receptor candidates a large set of EST from this tissue were analysed and compared to and combined with a similar zebrafish (Danio rerio) resource
Local Communication Protocols for Learning Complex Swarm Behaviors with Deep Reinforcement Learning
Swarm systems constitute a challenging problem for reinforcement learning
(RL) as the algorithm needs to learn decentralized control policies that can
cope with limited local sensing and communication abilities of the agents.
While it is often difficult to directly define the behavior of the agents,
simple communication protocols can be defined more easily using prior knowledge
about the given task. In this paper, we propose a number of simple
communication protocols that can be exploited by deep reinforcement learning to
find decentralized control policies in a multi-robot swarm environment. The
protocols are based on histograms that encode the local neighborhood relations
of the agents and can also transmit task-specific information, such as the
shortest distance and direction to a desired target. In our framework, we use
an adaptation of Trust Region Policy Optimization to learn complex
collaborative tasks, such as formation building and building a communication
link. We evaluate our findings in a simulated 2D-physics environment, and
compare the implications of different communication protocols.Comment: 13 pages, 4 figures, version 2, accepted at ANTS 201
The expression pattern of dormancy-associated genes in multiple life-history stages in the rotifer Brachionus plicatilis
Rotifer resting eggs retain their viability for several decades in a non-desiccated form and are of interest in discerning the processes associated with dormancy, since in most organisms this phenomenon is linked with desiccation. The expression pattern of candidate genes with biological functions associated with dormancy in several other organisms was examined in rotifers. High-throughput transcriptome profiling revealed three patterns of gene expression in resting eggs: (1) relatively highly expressed genes coding for LEA proteins and putative paralogs of the small heat shock protein family (shsp); (2) genes coding for ferritin (ferr), glutathione-6-transferase (gts) and HSP70, where some of the putative gene paralogs of these families show relatively high expression levels and other putative paralogs show relatively low expression levels in resting eggs; and (3) genes with relatively low expression levels in resting eggs, for trehalose-6-phosphate synthase (tps), fatty-acid binding proteins (fab) and of lipoprotein lipase (lpl) and the aquaporins gene family (aqp). Changes in the expression pattern of some members of putative gene families occurred during the obligatory dormant period of resting eggs. A transition was observed from an expression pattern of diapausing embryos to an expression pattern of amictic females, during hatching. Differences were also found in the expression pattern in the different types of females, especially in those carrying resting eggs, and in males compared with females. These results suggest putative functional significance to genes associated with dormancy in non-desiccated resting eggs. It could also be proposed that their occurrence in resting eggs is developmentally programmed to facilitate survival in case of desiccation
Deaf, Dumb, and Chatting Robots, Enabling Distributed Computation and Fault-Tolerance Among Stigmergic Robot
We investigate ways for the exchange of information (explicit communication)
among deaf and dumb mobile robots scattered in the plane. We introduce the use
of movement-signals (analogously to flight signals and bees waggle) as a mean
to transfer messages, enabling the use of distributed algorithms among the
robots. We propose one-to-one deterministic movement protocols that implement
explicit communication. We first present protocols for synchronous robots. We
begin with a very simple coding protocol for two robots. Based on on this
protocol, we provide one-to-one communication for any system of n \geq 2 robots
equipped with observable IDs that agree on a common direction (sense of
direction). We then propose two solutions enabling one-to-one communication
among anonymous robots. Since the robots are devoid of observable IDs, both
protocols build recognition mechanisms using the (weak) capabilities offered to
the robots. The first protocol assumes that the robots agree on a common
direction and a common handedness (chirality), while the second protocol
assumes chirality only. Next, we show how the movements of robots can provide
implicit acknowledgments in asynchronous systems. We use this result to design
asynchronous one-to-one communication with two robots only. Finally, we combine
this solution with the schemes developed in synchronous settings to fit the
general case of asynchronous one-to-one communication among any number of
robots. Our protocols enable the use of distributing algorithms based on
message exchanges among swarms of Stigmergic robots. Furthermore, they provides
robots equipped with means of communication to overcome faults of their
communication device
BMC Genomics
BACKGROUND Microscopic monogonont rotifers, including the euryhaline species Brachionus plicatilis, are typically found in water bodies where environmental factors restrict population growth to short periods lasting days or months. The survival of the population is ensured via the production of resting eggs that show a remarkable tolerance to unfavorable conditions and remain viable for decades. The aim of this study was to generate Expressed Sequence Tags (ESTs) for molecular characterisation of processes associated with the formation of resting eggs, their survival during dormancy and hatching. RESULTS Four normalized and four subtractive libraries were constructed to provide a resource for rotifer transcriptomics associated with resting-egg formation, storage and hatching. A total of 47,926 sequences were assembled into 18,000 putative transcripts and analyzed using both Blast and GO annotation. About 28-55% (depending on the library) of the clones produced significant matches against the Swissprot and Trembl databases. Genes known to be associated with desiccation tolerance during dormancy in other organisms were identified in the EST libraries. These included genes associated with antioxidant activity, low molecular weight heat shock proteins and Late Embryonic Abundant (LEA) proteins. Real-time PCR confirmed that LEA transcripts, small heat-shock proteins and some antioxidant genes were upregulated in resting eggs, therefore suggesting that desiccation tolerance is a characteristic feature of resting eggs even though they do not necessarily fully desiccate during dormancy. The role of trehalose in resting-egg formation and survival remains unclear since there was no significant difference between resting-egg producing females and amictic females in the expression of the tps-1 gene. In view of the absence of vitellogenin transcripts, matches to lipoprotein lipase proteins suggest that, similar to the situation in dipterans, these proteins may serve as the yolk proteins in rotifers. CONCLUSION: The 47,926 ESTs expand significantly the current sequence resource of B. plicatilis. It describes, for the first time, genes putatively associated with resting eggs and will serve as a database for future global expression experiments, particularly for the further identification of dormancy related genes
- …