11 research outputs found

    The effect of fasting on the ultrastructure of the hypothalamic arcuate nucleus in young rats

    Get PDF
    In the present study, we described ultrastructural changes occurring in the neurons of the hypothalamic arcuate nucleus after food deprivation. Young male Wistar rats (5 months old, n = 12) were divided into three groups. The animals in Group I were used as control (normally fed), and the rats in Groups II and III were fasted for 48 hours and 96 hours, respectively. In both treated groups, fasting caused rearrangement of the rough endoplasmic reticulum forming lamellar bodies and membranous whorls. The lamellar bodies were rather short in the controls, whereas in the fasting animals they became longer and were sometimes participating in the formation of membranous whorls composed of the concentric layers of the smooth endoplasmic reticulum. The whorls were often placed in the vicinity of a very well developed Golgi complex. Some Golgi complexes displayed an early stage of whorl formation. Moreover, an increased serum level of 8-isoprostanes, being a reliable marker of total oxidative stress in the body, was observed in both fasting groups of rats as compared to the control

    Ultrastructural observations on the hypothalamic arcuate nuclei of aged rats in the fasting/refeeding model

    Get PDF
    The arcuate nucleus of the hypothalamus (ARH) is involved in the control of energy homeostasis. This is the first study on the ultrastructural response of ARH neurons in aged rats after short-term fasting and subsequent refeeding. Male Wistar rats (24 weeks old) were fasted for 48 or 96 hours and were then refed for 24 hours. The controls were normally fed. The rats received water ad libitum. In both groups of fasting animals, we observed a rearrangement of the arcuate rough endoplasmic reticulum (RER) and Golgi complexes to form membranous whorls. Moreover, refeeding for 24 hours did not reverse this process. The RER was frequently found to be well organized into lamellar bodies composed of several cisternae. The membranous whorls were composed of concentric layers of endoplasmic reticulum and Golgi complexes. In addition, multiform lipofuscin granules were observed in close relationship with Golgi complexes and membranous whorls. Lipofuscin granules within the neurons of the arcuate nucleus are assumed to be a morphological manifestation of oxidative stress phenomena, which are presumably implicated in the formation of membranous whorls in both fasting and fasting/refed animals. This observation correlates with a significant increase in 8-isoprostane serum levels in the fasting and fasting/refed animals as compared to the fed control rats

    Changes in the morphology of the acinar cells of the rat pancreas in the oedematous and necrotic types of experimental acute pancreatitis

    Get PDF
    Limited experimental models of the oedematous and necrotic types of acute pancreatitis provide some understanding of the pathophysiology of this disease. Wistar rats were treated with cerulein at 10 mg/kg of body weight or with L-arginine at 1.5 or 3 g/kg of body weight in order to induce the oedematous or necrotic type of acute pancreatitis. After the induction period we examined samples of pancreata with light and electron microscopes. Morphological examination showed profound changes in the histology of the pancreas and its acinar cells and subcellular structures, especially in the group of rats which received a higher dose of L-arginine, amounting to 3 g/kg body weight. These included parenchymal haemorrhage and widespread acinar cell necrotic changes. 4-OH-TEMPO successfully prevented morphological deterioration as well as amylase release, suggesting that the severity of the two types of disease strongly depends on the intensity of the oxidative stress. Our results lend support to the assumption that reactive oxygen species play an axial role in the pathogenesis of both types of acute pancreatitis

    Ultrastructural response of arcuate nucleus neurons to fasting in aged rats

    Get PDF
    The arcuate nucleus of the hypothalamus (ARH) is involved in the control of energy homeostasis. Leptin - an adipocyte derived hormone - is known to act on the hypothalamic nuclei and thus to control body weight by food intake reduction. Oxidative stress is believed to be implicated in leptin signalling. However, its relevance for leptin-induced signal transduction within ARH remains unclear. The goal of the study was to investigate the effect of fasting on morphological alterations of the neuronal endoplasmic reticulum/Golgi network as well as on the expression of leptin receptors in the arcuate nucleus of aged rats. Male Wistar rats, aged 24 months, were fasted for 96 hours. The control animals were fed ad libitum. Membranous whorls in the ARH neurons were visualized using the electron microscopy technique. Leptin receptors in the membranes of ARH neurons were determined immunohistochemically (IHC), and soluble leptin receptors in the plasma as well as plasma isoprostanes were quantified immunochemically (ELISA). An intense formation of membranous whorls was observed, directly associated with the cisternae of the rough endoplasmic reticulum, as well as lamellar bodies. Interestingly, the whorls were often localized near a well-developed Golgi complex. Moreover, some Golgi complexes displayed an early stage of whorl formation. Groups of residual lipofuscin granules were found in the immediate proximity of the whorls. An increased immunoreactivity with neuronal leptin receptors suggests that hypersensitive neurons may still effectively respond to the fasting serum levels of leptin, mediating ultrastructural transformation of ARH neurons during short-term fasting. Having observed a significant accumulation of lipofuscin granules and a marked increase of total 8-isoprostane serum level in the fasting rats, we hypothesize that signal transduction within the neurons of ARH is dependent on oxidative stress phenomena

    4-OH-TEMPO prevents the morphological alteration of rat thymocytes primed to apoptosis by oxidative stress inducer ButOOH

    Get PDF
    Thymocytes exposed to the pro-oxidant tert–butyl-hydroperoxide (ButOOH) display a number of dramatic changes in morphology similar to those observed in the case of dexamethasone-treated cells. Both reagents induce nuclear chromatin peripheral aggregation below the nuclear membrane. Some nuclei themselves break up producing two or more fragments. ButOOH-treated cells are morphologically characterised by cell shrinkage, extensive surface blebbing and, finally, fragmentation into membrane–bound apoptotic bodies composed of cytoplasm and tightly packed with or without nuclear fragments. An increased level of lipid hydroxyperoxides was detected after exposure of thymocytes to ButOOH. Both oxidative stress markers and morphological damage to cells were prevented by the antioxidant 4-OH-TEMPO

    A Novel Biosensor for Evaluation of Apoptotic or Necrotic Effects of Nitrogen Dioxide during Acute Pancreatitis in Rat

    Get PDF
    The direct and accurate estimation of nitric dioxide levels is an extremely laborious and technically demanding procedure in the molecular diagnostics of inflammatory processes. The aim of this work is to demonstrate that a stop-flow technique utilizing a specific spectroscopic biosensor can be used for detection of nanomolar quantities of NO2 in biological milieu. The use of novel compound cis-[Cr(C2O4)(AaraNH2)(OH2)2]+ increases NO2 estimation accuracy by slowing down the rate of NO2 uptake. In this study, an animal model of pancreatitis, where nitrosative stress is induced by either 3g/kg bw or 1.5 g/kg bw dose of l-arginine, was used. Biochemical parameters and morphological characteristics of acute pancreatitis were monitored, specifically assessing pancreatic acinar cell death mode, NO2 generation and cellular glutathione level. The severity of the process correlated positively with NO2 levels in pancreatic acinar cell cytosol samples, and negatively with cellular glutathione levels

    The morphology of acinar cells during acute pancreatitis in rats induced by intraductal infusion of peracetate

    Get PDF
    Many experimental models have been created to explain the pathophysiology of acute pancreatitis (AP). Investigations have been undertaken in this laboratory into the influence of strong oxidants introduced into the pancreas retrogradely through the bile-pancreatic duct. In these experiments a potentially toxic metabolite of ethanol-peracetic acid was used to induce AP. Wistar rats were treated with 1 mM and 40 mM peracetate and with a solvent as a control for 1 and 3 hours respectively. After a period of observation the samples of pancreata were examined in a light and electron microscope together with the content of sulphydryl groups as a marker of intracellular oxidative stress. The morphological examination showed profound changes in the histology of the pancreas and also in its subcellular structures, especially in groups 3 and 4 (with a higher concentration of peracetate). The changes included parenchymal haemorrhage and widespread acinar cell necrosis. The level of the sulphydryl groups decreased in the rats treated with peracetate. This suggests that the severity of the disease strongly depends on the intensity of the oxidative stress. The results confirmed the axial role of oxygen-derived free radicals in the pathogenesis of AP

    Ultrastructural organization of the visual zone in the claustrum of the cat

    No full text
    Data obtained by using ultrastructural and morphometric approaches revealed three types of neurons in the cat visual claustrum. The most numerous were medium-sized and large ones. They formed 3/4 of the cell population. The ultrastructural properties of those cell types were largely similar. Their cell bodies were oval, round, fusiform or triangular and contained more or less indented nuclear envelope. The cytoplasm of those cells was characterized by a high concentration of subcellular organelles and particularly rough endoplasmic reticulum. The characteristic feature of those cells was a low nucleus/cell body area ratio (47 ± 1% and 43 ± 1%, respectively). The proximal dendrites of medium-sized cells were usually wide at the base, relatively short and tapering, whereas, those arising in the large cells were often thick and had a short tapering base. The neurons described above stained by Golgi impregnation method shoved spines on their distal dendrites both under the light and electron microscopy. The retrograde axonal transport of HRP and WGA-HRP following injections into the visual cortex confirm that they are mainly projection cells, which form the ascending limb of the claustrocortical loop. The third type of neurons formed a less numerous group of small cells, which differed from the larger ones in various respects. They possessed the large nuclei with deeply indented nuclear envelope and comparatively a thin layer of cytoplasm poor in subcellular organells among which free ribosomes and mitochondria were common. The nucleus/cells body area ratio high (59 ± 2%). In Golgi preparations their dendrites did not show spines. The dendrites originating from that type of neurons were thin, long and did not possess a wide tapering base. They are mainly claustral intrinsic neurons

    The amygdaloid body of the rabbit - a morphometric study using image analyser

    No full text
    The amygdaloid body is a telencephalic structure belonging to the limbic system. The amygdaloid body consists of the two main nuclear groups: corticomedial and basolateral. The former-phylogenetically older group is composed of the central, medial, and cortical nuclei, while the latter, phylogenetically younger one, of the lateral, basolateral and basomedial ones. The results presented in our paper indicate differences in the structure and topography of the specific amygdaloid nuclei. Their subdivisions in the rabbit are not as evident as in the rat. Apart from structural differences, the cellular composition of specific nuclei does not differ distinctly. It can suggest that their intrinsic and extrinsic connections might be similar and the role and function of them is maintained (with few exceptions) through the phylogeny
    corecore