4,109 research outputs found

    Synthesis and crystal structure of the first 6a-thiathiophthen metal complex [Mo(CO)_5PPh_(2]2)(Β΅-C_5H_2S_3)

    Get PDF
    The first 6a-thiathiophthen metal complex was prepared by treating M(CO_)5[PPh_2CS_2CH_2C≑CH] with a catalytic amount of secondary amine or tertiary amine; the structure of the 6a-thiathiophthen molybdenum complex is confirmed by an X-ray diffraction analysis

    QCD radiative correction to color-octet J/ψJ/\psi inclusive production at B Factories

    Full text link
    In nonrelativistic Quantum Chromodynamics (NRQCD), we study the next-to-leading order (NLO) QCD radiative correction to the color-octet J/ψJ/\psi inclusive production at B Factories. Compared with the leading-order (LO) result, the NLO QCD corrections are found to enhance the short-distance coefficients in the color-octet J/ψJ/\psi production e+eβˆ’β†’ccΛ‰(3P0(8)or3P0(8))g e^+ e^-\to c \bar c (^3P_0^{(8)} {\rm or} ^3P_0^{(8)})g by a factor of about 1.9. Moreover, the peak at the endpoint in the J/ψJ/\psi energy distribution predicted at LO can be smeared by the NLO corrections, but the major color-octet contribution still comes from the large energy region of J/ψJ/\psi. By fitting the latest data of Οƒ(e+eβˆ’β†’J/ψ+Xnonβˆ’ccΛ‰)\sigma(e^{+}e^{-}\to J/\psi+X_{\mathrm{non-c\bar{c}}}) observed by Belle, we find that the values of color-octet matrix elements are much smaller than expected earlier by using the naive velocity scaling rules or extracted from fitting experimental data with LO calculations. As the most stringent constraint by setting the color-singlet contribution to be zero in e+eβˆ’β†’J/ψ+Xnonβˆ’ccΛ‰e^{+}e^{-}\to J/\psi+X_{\mathrm{non-c\bar{c}}}, we get an upper limit of the color-octet matrix element, +4.0<0∣OJ/ψ[3P0(8)]∣0>/mc2<(2.0Β±0.6)Γ—10βˆ’2GeV3 + 4.0 <0| {\cal O}^{J/\psi} [{}^3P_0^{(8)}]|0>/m_c^2 <(2.0 \pm 0.6)\times 10^{-2} {\rm GeV}^3 at NLO in Ξ±s\alpha_s.Comment: 18 pages, 8 figure

    Coulomb Drag in Graphene

    Full text link
    We study the Coulomb drag between two single graphene sheets in intrinsic and extrinsic graphene systems with no interlayer tunneling. The general expression for the nonlinear susceptibility appropriate for single-layer graphene systems is derived using the diagrammatic perturbation theory, and the corresponding exact zero-temperature expression is obtained analytically. We find that, despite the existence of a non-zero conductivity in an intrinsic graphene layer, the Coulomb drag between intrinsic graphene layers vanishes at all temperatures. In extrinsic systems, we obtain numerical results and an approximate analytical result for the drag resistivity ρD\rho_{\textrm{D}}, and find that ρD\rho_{\textrm{D}} goes as T2T^2 at low temperature TT, as 1/d41/d^4 for large bilayer separation dd and 1/n31/n^3 for high carrier density nn. We also discuss qualitatively the effect of plasmon-induced enhancement on the Coulomb drag, which should occur at a temperature of the order of or higher than the Fermi temperature
    • …
    corecore