1,183 research outputs found

    Functional Linear Non-Gaussian Acyclic Model for Causal Discovery

    Full text link
    In causal discovery, non-Gaussianity has been used to characterize the complete configuration of a Linear Non-Gaussian Acyclic Model (LiNGAM), encompassing both the causal ordering of variables and their respective connection strengths. However, LiNGAM can only deal with the finite-dimensional case. To expand this concept, we extend the notion of variables to encompass vectors and even functions, leading to the Functional Linear Non-Gaussian Acyclic Model (Func-LiNGAM). Our motivation stems from the desire to identify causal relationships in brain-effective connectivity tasks involving, for example, fMRI and EEG datasets. We demonstrate why the original LiNGAM fails to handle these inherently infinite-dimensional datasets and explain the availability of functional data analysis from both empirical and theoretical perspectives. {We establish theoretical guarantees of the identifiability of the causal relationship among non-Gaussian random vectors and even random functions in infinite-dimensional Hilbert spaces.} To address the issue of sparsity in discrete time points within intrinsic infinite-dimensional functional data, we propose optimizing the coordinates of the vectors using functional principal component analysis. Experimental results on synthetic data verify the ability of the proposed framework to identify causal relationships among multivariate functions using the observed samples. For real data, we focus on analyzing the brain connectivity patterns derived from fMRI data

    Multi-energy X-ray linear-array detector enabled by the side-illuminated metal halide scintillator

    Full text link
    Conventional scintillator-based X-ray imaging typically captures the full spectral of X-ray photons without distinguishing their energy. However, the absence of X-ray spectral information often results in insufficient image contrast, particularly for substances possessing similar atomic numbers and densities. In this study, we present an innovative multi-energy X-ray linear-array detector that leverages side-illuminated X-ray scintillation using emerging metal halide Cs3Cu2I5. The negligible self-absorption characteristic not only improves the scintillation output but is also beneficial for improving the energy resolution for the side-illuminated scintillation scenarios. By exploiting Beer's law, which governs the absorption of X-ray photons with different energies, the incident X-ray spectral can be reconstructed by analyzing the distribution of scintillation intensity when the scintillator is illuminated from the side. The relative error between the reconstructed and measured X-ray spectral was less than 5.63 %. Our method offers an additional energy-resolving capability for X-ray linear-array detectors commonly used in computed tomography (CT) imaging setups, surpassing the capabilities of conventional energy-integration approaches, all without requiring extra hardware components. A proof-of-concept multi-energy CT imaging system featuring eight energy channels was successfully implemented. This study presents a simple and efficient strategy for achieving multi-energy X-ray detection and CT imaging based on emerging metal halides

    PromptASR for contextualized ASR with controllable style

    Full text link
    Prompts are crucial to large language models as they provide context information such as topic or logical relationships. Inspired by this, we propose PromptASR, a framework that integrates prompts in end-to-end automatic speech recognition (E2E ASR) systems to achieve contextualized ASR with controllable style of transcriptions. Specifically, a dedicated text encoder encodes the text prompts and the encodings are injected into the speech encoder by cross-attending the features from two modalities. When using the ground truth text from preceding utterances as content prompt, the proposed system achieves 21.9% and 6.8% relative word error rate reductions on a book reading dataset and an in-house dataset compared to a baseline ASR system. The system can also take word-level biasing lists as prompt to improve recognition accuracy on rare words. An additional style prompt can be given to the text encoder and guide the ASR system to output different styles of transcriptions. The code is available at icefall.Comment: Submitted to ICASSP202

    Delay-penalized CTC implemented based on Finite State Transducer

    Full text link
    Connectionist Temporal Classification (CTC) suffers from the latency problem when applied to streaming models. We argue that in CTC lattice, the alignments that can access more future context are preferred during training, thereby leading to higher symbol delay. In this work we propose the delay-penalized CTC which is augmented with latency penalty regularization. We devise a flexible and efficient implementation based on the differentiable Finite State Transducer (FST). Specifically, by attaching a binary attribute to CTC topology, we can locate the frames that firstly emit non-blank tokens on the resulting CTC lattice, and add the frame offsets to the log-probabilities. Experimental results demonstrate the effectiveness of our proposed delay-penalized CTC, which is able to balance the delay-accuracy trade-off. Furthermore, combining the delay-penalized transducer enables the CTC model to achieve better performance and lower latency. Our work is open-sourced and publicly available https://github.com/k2-fsa/k2.Comment: Accepted in INTERSPEECH 202

    Libriheavy: a 50,000 hours ASR corpus with punctuation casing and context

    Full text link
    In this paper, we introduce Libriheavy, a large-scale ASR corpus consisting of 50,000 hours of read English speech derived from LibriVox. To the best of our knowledge, Libriheavy is the largest freely-available corpus of speech with supervisions. Different from other open-sourced datasets that only provide normalized transcriptions, Libriheavy contains richer information such as punctuation, casing and text context, which brings more flexibility for system building. Specifically, we propose a general and efficient pipeline to locate, align and segment the audios in previously published Librilight to its corresponding texts. The same as Librilight, Libriheavy also has three training subsets small, medium, large of the sizes 500h, 5000h, 50000h respectively. We also extract the dev and test evaluation sets from the aligned audios and guarantee there is no overlapping speakers and books in training sets. Baseline systems are built on the popular CTC-Attention and transducer models. Additionally, we open-source our dataset creatation pipeline which can also be used to other audio alignment tasks.Comment: Submitted to ICASSP 202

    Zipformer: A faster and better encoder for automatic speech recognition

    Full text link
    The Conformer has become the most popular encoder model for automatic speech recognition (ASR). It adds convolution modules to a transformer to learn both local and global dependencies. In this work we describe a faster, more memory-efficient, and better-performing transformer, called Zipformer. Modeling changes include: 1) a U-Net-like encoder structure where middle stacks operate at lower frame rates; 2) reorganized block structure with more modules, within which we re-use attention weights for efficiency; 3) a modified form of LayerNorm called BiasNorm allows us to retain some length information; 4) new activation functions SwooshR and SwooshL work better than Swish. We also propose a new optimizer, called ScaledAdam, which scales the update by each tensor's current scale to keep the relative change about the same, and also explictly learns the parameter scale. It achieves faster convergence and better performance than Adam. Extensive experiments on LibriSpeech, Aishell-1, and WenetSpeech datasets demonstrate the effectiveness of our proposed Zipformer over other state-of-the-art ASR models. Our code is publicly available at https://github.com/k2-fsa/icefall.Comment: Published as a conference paper at ICLR 202

    Delay-penalized transducer for low-latency streaming ASR

    Full text link
    In streaming automatic speech recognition (ASR), it is desirable to reduce latency as much as possible while having minimum impact on recognition accuracy. Although a few existing methods are able to achieve this goal, they are difficult to implement due to their dependency on external alignments. In this paper, we propose a simple way to penalize symbol delay in transducer model, so that we can balance the trade-off between symbol delay and accuracy for streaming models without external alignments. Specifically, our method adds a small constant times (T/2 - t), where T is the number of frames and t is the current frame, to all the non-blank log-probabilities (after normalization) that are fed into the two dimensional transducer recursion. For both streaming Conformer models and unidirectional long short-term memory (LSTM) models, experimental results show that it can significantly reduce the symbol delay with an acceptable performance degradation. Our method achieves similar delay-accuracy trade-off to the previously published FastEmit, but we believe our method is preferable because it has a better justification: it is equivalent to penalizing the average symbol delay. Our work is open-sourced and publicly available (https://github.com/k2-fsa/k2).Comment: Submitted to 2023 IEEE International Conference on Acoustics, Speech and Signal Processin
    corecore