8,905 research outputs found

    Soliton transverse instabilities in nonlocal nonlinear media

    Full text link
    We analyze the transverse instabilities of spatial bright solitons in nonlocal nonlinear media, both analytically and numerically. We demonstrate that the nonlocal nonlinear response leads to a dramatic suppression of the transverse instability of the soliton stripes, and we derive the asymptotic expressions for the instability growth rate in both short- and long-wave approximations.Comment: 3 pages, 3 figure

    Quantum discord amplification induced by quantum phase transition via a cavity-Bose-Einstein-condensate system

    Full text link
    We propose a theoretical scheme to realize a sensitive amplification of quantum discord (QD) between two atomic qubits via a cavity-Bose-Einstein condensate (BEC) system which was used to firstly realize the Dicke quantum phase transition (QPT) [Nature 464, 1301 (2010)]. It is shown that the influence of the cavity-BEC system upon the two qubits is equivalent to a phase decoherence environment. It is found that QPT in the cavity-BEC system is the physical mechanism of the sensitive QD amplification.Comment: 5 pages, 3 figure

    Theoretical studies of 63Cu Knight shifts of the normal state of YBa2Cu3O7

    Full text link
    The 63Cu Knight shifts and g factors for the normal state of YBa2Cu3O7 in tetragonal phase are theoretically studied in a uniform way from the high (fourth-) order perturbation formulas of these parameters for a 3d9 ion under tetragonally elongated octahedra. The calculations are quantitatively correlated with the local structure of the Cu2+(2) site in YBa2Cu3O7. The theoretical results show good agreement with the observed values, and the improvements are achieved by adopting fewer adjustable parameters as compared to the previous works. It is found that the significant anisotropy of the Knight shifts is mainly attributed to the anisotropy of the g factors due to the orbital interactions.Comment: 5 page

    S-D mixing and ψ(3770)\psi(3770) production in e+ee^+e^- annihilation and B decay and its radiative transitions

    Full text link
    The large decay rate observed by Belle for B+ψ(3770)K+B^+\to\psi(3770)K^+, which is comparable to B+ψ(3686)K+B^+\to\psi(3686)K^+, might indicate either an unexpectedly large S-D mixing angle θ40o|\theta|\approx 40^o or the leading role of the color-octet mechanism in D-wave charmonium production in B decay. By calculating the production rate of ψ(3770)\psi(3770) in the continuum e+ee^+e^- annihilation at s=10.6\sqrt{s}=10.6 GeV with these two possible approaches (i.e. the large S-D mixing and the color-octet mechanism), we show that the measurement for this process at Belle and BaBar may provide a clear cut clarification for the two approaches. In addition, the radiative E1 transition ratio Γ(ψ(3770)γχc2)/Γ(ψ(3770)γχc1)\Gamma(\psi(3770)\to \gamma\chi_{c2})/\Gamma(\psi(3770)\to \gamma\chi_{c1}) may dramatically change from \sim 0.04 (for θ0o\theta\approx 0^o) to \sim 200 (for θ40o\theta\approx -40^o) due to the large S-D interference effect, thus the E1 transition measurement of ψ(3770)\psi(3770) at BES and CLEO-c will also be very useful in clarifying this issue.Comment: final version to appear in Phys.Rev.D, discussion on uncertainties associated with the color-octet matrix elements is added, 16 pages, 2 figure
    corecore