6 research outputs found

    Federated Cross Learning for Medical Image Segmentation

    Full text link
    Federated learning (FL) can collaboratively train deep learning models using isolated patient data owned by different hospitals for various clinical applications, including medical image segmentation. However, a major problem of FL is its performance degradation when dealing with the data that are not independently and identically distributed (non-iid), which is often the case in medical images. In this paper, we first conduct a theoretical analysis on the FL algorithm to reveal the problem of model aggregation during training on non-iid data. With the insights gained through the analysis, we propose a simple and yet effective method, federated cross learning (FedCross), to tackle this challenging problem. Unlike the conventional FL methods that combine multiple individually trained local models on a server node, our FedCross sequentially trains the global model across different clients in a round-robin manner, and thus the entire training procedure does not involve any model aggregation steps. To further improve its performance to be comparable with the centralized learning method, we combine the FedCross with an ensemble learning mechanism to compose a federated cross ensemble learning (FedCrossEns) method. Finally, we conduct extensive experiments using a set of public datasets. The experimental results show that the proposed FedCross training strategy outperforms the mainstream FL methods on non-iid data. In addition to improving the segmentation performance, our FedCrossEns can further provide a quantitative estimation of the model uncertainty, demonstrating the effectiveness and clinical significance of our designs. Source code will be made publicly available after paper publication.Comment: 10 pages, 4 figure

    Soft-tissue Driven Craniomaxillofacial Surgical Planning

    Full text link
    In CMF surgery, the planning of bony movement to achieve a desired facial outcome is a challenging task. Current bone driven approaches focus on normalizing the bone with the expectation that the facial appearance will be corrected accordingly. However, due to the complex non-linear relationship between bony structure and facial soft-tissue, such bone-driven methods are insufficient to correct facial deformities. Despite efforts to simulate facial changes resulting from bony movement, surgical planning still relies on iterative revisions and educated guesses. To address these issues, we propose a soft-tissue driven framework that can automatically create and verify surgical plans. Our framework consists of a bony planner network that estimates the bony movements required to achieve the desired facial outcome and a facial simulator network that can simulate the possible facial changes resulting from the estimated bony movement plans. By combining these two models, we can verify and determine the final bony movement required for planning. The proposed framework was evaluated using a clinical dataset, and our experimental results demonstrate that the soft-tissue driven approach greatly improves the accuracy and efficacy of surgical planning when compared to the conventional bone-driven approach.Comment: Early accepted by MICCAI 202

    Guidelines for the Diagnosis and Treatment of Primary Liver Cancer (2022 Edition)

    No full text
    Background: Primary liver cancer, around 75%–85% are hepatocellular carcinoma in China, is the fourth most common malignancy and the second leading cause of tumor-related death, thereby posing a significant threat to the life and health of the Chinese people. Summary: Since the publication of Guidelines for Diagnosis and Treatment of Primary Liver Cancer in China in June 2017, which were updated by the National Health Commission in December 2019, additional high-quality evidence has emerged from researchers worldwide regarding the diagnosis, staging, and treatment of liver cancer, that requires the guidelines to be updated again. The new edition (2022 Edition) was written by more than 100 experts in the field of liver cancer in China, which not only reflects the real-world situation in China, but also may re-shape the nationwide diagnosis and treatment of liver cancer. Key Messages: The new guideline aims to encourage the implementation of evidence-based practice, and improve the national average five-year survival rate for patients with liver cancer, as proposed in the "Health China 2030 Blueprint.
    corecore