13 research outputs found

    Utility of TERT Promoter Mutations for Cutaneous Primary Melanoma Diagnosis

    Get PDF
    Telomerase reverse transcriptase (TERT) promoter mutations are commonly found in malignant melanomas but rare in melanocytic nevi. To assess its potential diagnostic utility for the distinction of melanoma from nevus, we determined the TERT promoter mutation status of 86 primary melanomas, 72 melanocytic nevi, and 40 diagnostically problematic melanocytic proliferations. Of the 86 melanomas, 67 (77.9%) were TERT-positive, defined as harboring a hotspot TERT promoter mutation at positions -124C>T, -124_125CC>TT, -138_139CC>TT, or -146C>T. Of the 72 nevi, only 1 (1.4%) was TERT-positive. Of the 40 diagnostically uncertain melanocytic proliferations, 2 (5.0%) were TERT-positive. TERT positivity as a test for melanoma versus nevus had an accuracy of 87.3% [95% confidence interval (CI), 81.1-92.1], a sensitivity of 77.9% (95% CI, 68.9-85.4), a specificity of 98.6% (95% CI, 95.8-100), a positive predictive value of 98.5% (95% CI, 95.6-100), and a negative predictive value of 78.9% (95% CI, 72.6-85.4). Our results indicate that hotspot TERT promoter mutation status may be a useful ancillary parameter for the diagnosis of melanoma. In particular, the high specificity of these mutations for melanoma indicates the presence of a TERT promoter mutation in a melanocytic neoplasm associated with diagnostic controversy, or uncertainty should increase concern for a melanoma

    Identification of a Robust Methylation Classifier for Cutaneous Melanoma Diagnosis

    Get PDF
    Early diagnosis improves melanoma survival, yet the histopathological diagnosis of cutaneous primary melanoma can be challenging, even for expert dermatopathologists. Analysis of epigenetic alterations, such as DNA methylation, that occur in melanoma can aid in its early diagnosis. Using a genome-wide methylation screening, we assessed CpG methylation in a diverse set of 89 primary invasive melanomas, 73 nevi, and 41 melanocytic proliferations of uncertain malignant potential, classified based on interobserver review by dermatopathologists. Melanomas and nevi were split into training and validation sets. Predictive modeling in the training set using ElasticNet identified a 40-CpG classifier distinguishing 60 melanomas from 48 nevi. High diagnostic accuracy (area under the receiver operator characteristic curve = 0.996, sensitivity = 96.6%, and specificity = 100.0%)was independently confirmed in the validation set (29 melanomas, 25 nevi)and other published sample sets. The 40-CpG melanoma classifier included homeobox transcription factors and genes with roles in stem cell pluripotency or the nervous system. Application of the 40-CpG melanoma classifier to the diagnostically uncertain samples assigned melanoma or nevus status, potentially offering a diagnostic tool to assist dermatopathologists. In summary, the robust, accurate 40-CpG melanoma classifier offers a promising assay for improving primary melanoma diagnosis

    Characterization of the CpG Island Hypermethylated Phenotype Subclass in Primary Melanomas

    Get PDF
    Cutaneous melanoma can be lethal even if detected at an early stage. Epigenetic profiling may facilitate the identification of aggressive primary melanomas with unfavorable outcomes. We performed clustering of whole-genome methylation data to identify subclasses that were then assessed for survival, clinical features, methylation patterns, and biological pathways. Among 89 cutaneous primary invasive melanomas, we identified three methylation subclasses exhibiting low methylation, intermediate methylation, or hypermethylation of CpG islands, known as the CpG island methylator phenotype (CIMP). CIMP melanomas occurred as early as tumor stage 1b and, compared with low-methylation melanomas, were associated with age at diagnosis ≥65 years, lentigo maligna melanoma histologic subtype, presence of ulceration, higher American Joint Committee on Cancer stage and tumor stage, and lower tumor-infiltrating lymphocyte grade (all P < 0.05). Patients with CIMP melanomas had worse melanoma-specific survival (hazard ratio = 11.84; confidence interval = 4.65‒30.20) than those with low-methylation melanomas, adjusted for age, sex, American Joint Committee on Cancer stage, and tumor-infiltrating lymphocyte grade. Genes hypermethylated in CIMP compared with those in low-methylation melanomas included PTEN, VDR, PD-L1, TET2, and gene sets related to development/differentiation, the extracellular matrix, and immunity. CIMP melanomas exhibited hypermethylation of genes important in melanoma progression and tumor immunity, and although present in some early melanomas, CIMP was associated with worse survival independent of known prognostic factors

    InterMEL: An international biorepository and clinical database to uncover predictors of survival in early-stage melanoma

    Get PDF
    INTRODUCTION: We are conducting a multicenter study to identify classifiers predictive of disease-specific survival in patients with primary melanomas. Here we delineate the unique aspects, challenges, and best practices for optimizing a study of generally small-sized pigmented tumor samples including primary melanomas of at least 1.05mm from AJTCC TNM stage IIA-IIID patients. We also evaluated tissue-derived predictors of extracted nucleic acids' quality and success in downstream testing. This ongoing study will target 1,000 melanomas within the international InterMEL consortium. METHODS: Following a pre-established protocol, participating centers ship formalin-fixed paraffin embedded (FFPE) tissue sections to Memorial Sloan Kettering Cancer Center for the centralized handling, dermatopathology review and histology-guided coextraction of RNA and DNA. Samples are distributed for evaluation of somatic mutations using next gen sequencing (NGS) with the MSK-IMPACTTM assay, methylation-profiling (Infinium MethylationEPIC arrays), and miRNA expression (Nanostring nCounter Human v3 miRNA Expression Assay). RESULTS: Sufficient material was obtained for screening of miRNA expression in 683/685 (99%) eligible melanomas, methylation in 467 (68%), and somatic mutations in 560 (82%). In 446/685 (65%) cases, aliquots of RNA/DNA were sufficient for testing with all three platforms. Among samples evaluated by the time of this analysis, the mean NGS coverage was 249x, 59 (18.6%) samples had coverage below 100x, and 41/414 (10%) failed methylation QC due to low intensity probes or insufficient Meta-Mixed Interquartile (BMIQ)- and single sample (ss)- Noob normalizations. Six of 683 RNAs (1%) failed Nanostring QC due to the low proportion of probes above the minimum threshold. Age of the FFPE tissue blocks (p<0.001) and time elapsed from sectioning to co-extraction (p = 0.002) were associated with methylation screening failures. Melanin reduced the ability to amplify fragments of 200bp or greater (absent/lightly pigmented vs heavily pigmented, p<0.003). Conversely, heavily pigmented tumors rendered greater amounts of RNA (p<0.001), and of RNA above 200 nucleotides (p<0.001). CONCLUSION: Our experience with many archival tissues demonstrates that with careful management of tissue processing and quality control it is possible to conduct multi-omic studies in a complex multi-institutional setting for investigations involving minute quantities of FFPE tumors, as in studies of early-stage melanoma. The study describes, for the first time, the optimal strategy for obtaining archival and limited tumor tissue, the characteristics of the nucleic acids co-extracted from a unique cell lysate, and success rate in downstream applications. In addition, our findings provide an estimate of the anticipated attrition that will guide other large multicenter research and consortia
    corecore