57 research outputs found

    Treatment of acute pain in cats

    Get PDF
    The cat's popularity as a pet continues to grow, with the most recent surveys showing approximately 17% of the population live with cats. This increased popularity of cats invariably means that more cats are presented to veterinary surgeons for surgery and treatment of painful conditions, but it seems that the treatment of pain in the cat has lagged behind that of other species. Lack of analgesic administration may well stem from the difficulties in assessing pain in the cat, but is probably compounded by the false perceptions of the likelihood of severe side effects occurring more frequently with the use of opioids and non-steroidal anti-inflammatory drugs in cats, thereby inadvertently denying them the analgesics they require. This article complements a previous article covering the assessment of acute pain in the cat (White, 2016); the aim of this second article is to provide an evidence-based framework to follow for the treatment of acute pain in the cat

    Impact of oral meloxicam administered alone or in combination with gabapentin on experimentally induced lameness in beef calves

    Get PDF
    This study examined the pharmacokinetics and analgesic effect of oral meloxicam (MEL) administered alone or in combination with gabapentin (GABA) in an experimental bovine lameness model. Eighteen male British × Continental beef calves aged 4 to 6 mo and weighing 297 to 392 kg were randomly assigned to receive either 1) 0.5 mg/kg lactose monohydrate placebo (PLBO; n = 6), 2) 0.5 mg/kg MEL (n = 6), or 3) 0.5 mg/kg MEL combined with 15 mg/kg GABA (MEL-GABA; n = 6) once daily for 4 d. The first treatment was administered 4 h after a chemical synovitis/arthritis was induced with injection of 15 mg amphotericin B into the left hind lateral distal interphalangeal joint. Changes in activity were evaluated continuously with pedometers. Contact force, contact area, contact pressure, impulse, and stride length were recorded once daily with a pressure mat and visual lameness scores were determined by a masked observer using a 5-point scale. Cortisol and drug concentrations were determined daily by immunoassay and HPLC-mass spectrometry, respectively. Outcomes were compared statistically using a random effects mixed model and analysis of covariance. There was a positive association between lameness scores and serum cortisol concentrations (P = 0.02) and a negative association between lameness score and step count (P \u3c 0.0001), total force (P = 0.001), force applied to the lateral claw (P= 0.02), contact pressure (P = 0.005), and impulse of the lateral claw (P = 0.01). Step count was greater in MEL calves compared with PLBO (P = 0.008) and MEL-GABA (P = 0.04) calves. Impulse was greater in the MEL-GABA calves compared with the PLBO calves (P = 0.03). There was an inverse relationship between plasma MEL concentrations and lameness score (P = 0.02) and a positive association between MEL concentrations and force applied to the lateral claw (P = 0.03), total contact pressure (P = 0.03), and impulse on the lateral claw (P = 0.02). There was a tendency towards a positive association between GABA concentrations, total impulse, and impulse on the lateral claw (P = 0.08) and a negative associate between GABA concentrations and step count (P = 0.08). The results of this study suggest that MEL administered alone or in combination with GABA reduced the severity of lameness in calves following induction of lameness with amphotericin B. These findings have implications for developing analgesic protocols in lame calves that address both production and welfare concerns

    Parent-Metabolite Pharmacokinetic Models for Tramadol – Tests of Assumptions and Predictions

    Get PDF
    Allometric principles were used to discern cross-species differences in (±)-tramadol disposition and formation of its primary analgesic metabolite, (±)-O-desmethyl-tramadol (M1). Species differences in formation of M1 may help predict the analgesic effectiveness of tramadol. Tramadol was administered intravenously by a zero-order (constant infusion) process or rapid bolus dose and racemic concentrations of tramadol and M1 measured. Data were pooled to define differences between species (human, rat, cat, dog, goat, donkey and horse). A two-compartment linear disposition model with first-order elimination was used to describe tramadol and M1 disposition. Slow metabolizers were detected in 6% of the population and tramadol clearance to M1 was 16.2% that of extensive metabolizers. Tramadol clearance to M1 was slower and tramadol clearance by other pathways was faster in rats, dogs, and horses compared to humans. There are substantial differences between species in the pharmacokinetics of tramadol and its M1 metabolite, which are not explained by differences in body weight. The hypothesis that volumes of distribution are similar across species was shown not to be true. M1 exposure in the goat, donkey and cat was comparable to humans, which indicates it is likely to be an effective analgesic at typically used doses in these species but not in dogs or horses

    Interaction of \u3ci\u3eBacillus\u3c/i\u3e species and \u3ci\u3eSalmonella enterica\u3c/i\u3e serovar Typhimurium in immune or inflammatory signaling from swine intestinal epithelial cells

    Get PDF
    Previous research evaluated a laboratory strain of Bacillus licheniformis (BL) in a model swine epithelium and found it exerted antiinflammatory effects on Salmonella enterica serovar Typhimurium (Sal)-induced secretion of IL-8. The current investigation evaluated the antiinflammatory actions of Bacillus bacteria available commercially as feed additives for the swine industry. Three isolates were obtained from the product, 2 Bacillus subtilis (BS1 and BS3) and 1 BL (BL2). Swine jejunal epithelial IPEC-J2 cells were seeded into wells on permeable membrane supports and allowed to form confluent monolayers. Treatments included apical pretreatment with BL, BS1, BL2, or BS3 for 17 h without Sal, and the same Bacillus treatments but with 108 cfu of Sal added in the final hour of Bacillus incubation. Two additional treatments included negative control wells receiving no bacteria (control) and positive control wells receiving only Sal (10 total treatments). After bacterial incubation, wells were washed and fresh medium containing gentamicin was added. Cells were incubated for an additional 5 h, after which apical and basolateral media were recovered for determination of IL-8 and bacitracin. In addition, inserts with epithelial cells that had received Sal were lysed and lysates were cultured to determine treatment effects on Sal invasion. Exposure to Sal alone provoked an increase in IL-8 secretion from IPEC-J2 cells compared with control wells (P \u3c 0.001 for both the apical and basolateral directions). Pretreatment with each Bacillus isolate followed by challenge with Sal reduced Sal-induced IL-8 secretion in both the apical and basolateral compartments compared with wells receiving only Sal (P \u3c 0.001; except for BS3 apical, P \u3c 0.01). The residual presence of bacitracin could be detected only in BL2 and BL2+Sal. Fewer Sal colonies could be cultured from lysates of BL2+Sal than from the Sal, BS1+Sal, and BS3+Sal treatments (P \u3c 0.001). Results indicate that B. subtilis and BL have the ability to intervene in secretion of the neutrophil chemoattractant IL-8 from swine intestinal epithelial cells. This effect on chemokine secretion by gastrointestinal epithelial cells in vitro could not be explained solely by reduced invasion of epithelial cells by Sal
    • …
    corecore