6,069 research outputs found

    Coercive Field and Magnetization Deficit in Ga(1-x)Mn(x)As Epilayers

    Full text link
    We have studied the field dependence of the magnetization in epilayers of the diluted magnetic semiconductor Ga(1-x)Mn(x)As for 0.0135 < x < 0.083. Measurements of the low temperature magnetization in fields up to 3 T show a significant deficit in the total moment below that expected for full saturation of all the Mn spins. These results suggest that the spin state of the non-ferromagnetic Mn spins is energetically well separated from the ferromagnetism of the bulk of the spins. We have also studied the coercive field (Hc) as a function of temperature and Mn concentration, finding that Hc decreases with increasing Mn concentration as predicted theoretically.Comment: 15 total pages -- 5 text, 1 table, 4 figues. Accepted for publication in MMM 2002 conference proceedings (APL

    Symmetric Assembly Puzzles are Hard, Beyond a Few Pieces

    Get PDF
    We study the complexity of symmetric assembly puzzles: given a collection of simple polygons, can we translate, rotate, and possibly flip them so that their interior-disjoint union is line symmetric? On the negative side, we show that the problem is strongly NP-complete even if the pieces are all polyominos. On the positive side, we show that the problem can be solved in polynomial time if the number of pieces is a fixed constant

    Turnover of Soluble Proteins in the Wheat Sieve Tube

    Full text link

    POST COVID PNEUMONIA: MODERN THERAPEUTIC APPROACH BY PULMONARY DRUG DELIVERY DEVICE

    Get PDF
    Streptococcus pneumonia (also known as pneumococcal) is a commensal that colonizes the upper respiratory tract and a pathogen that causes intrusive illnesses like otitis media, pneumonia, sepsis, and meningitis. In India, the Invasive Bacterial Infection Surveillance (IBIS) organization and South Asian Pneumococcal Alliance (SAPNA) have been associated with assortment of significant information in regards to serotype dissemination and antimicrobial obstruction of pneumococcal diseases for over 12 years. COVID 19 Patients are much more prone towards this infection, if untreated at appropriate time. So development of New Device are immense Important which contributes rapid and Proper Drug Delivery to lungs. Research must be carried out in the field of Novel Drug Delivery System for target delivery of Drugs like Antibiotic, Bronchodiator and Corticosteroid to Respiratory Tract. The present Review article focus Different grade of Pneumococcal Infection and Infection associated with Post COVID Condition. The article also highlights new devices which helpful for Pulmonary drug delivery which is vital during COVID Associated Pneumococcal Infection

    An Optimized Deep Learning Based Optimization Algorithm for the Detection of Colon Cancer Using Deep Recurrent Neural Networks

    Get PDF
    Colon cancer is the second leading dreadful disease-causing death. The challenge in the colon cancer detection is the accurate identification of the lesion at the early stage such that mortality and morbidity can be reduced. In this work, a colon cancer classification method is identified out using Dragonfly-based water wave optimization (DWWO) based deep recurrent neural network. Initially, the input cancer images subjected to carry a pre-processing, in which outer artifacts are removed. The pre-processed image is forwarded for segmentation then the images are converted into segments using Generative adversarial networks (GAN). The obtained segments are forwarded for attribute selection module, where the statistical features like mean, variance, kurtosis, entropy, and textual features, like LOOP features are effectively extracted. Finally, the colon cancer classification is solved by using the deep RNN, which is trained by the proposed Dragonfly-based water wave optimization algorithm. The proposed DWWO algorithm is developed by integrating the Dragonfly algorithm and water wave optimization

    Plasma Edge Kinetic-MHD Modeling in Tokamaks Using Kepler Workflow for Code Coupling, Data Management and Visualization

    Get PDF
    A new predictive computer simulation tool targeting the development of the H-mode pedestal at the plasma edge in tokamaks and the triggering and dynamics of edge localized modes (ELMs) is presented in this report. This tool brings together, in a coordinated and effective manner, several first-principles physics simulation codes, stability analysis packages, and data processing and visualization tools. A Kepler workflow is used in order to carry out an edge plasma simulation that loosely couples the kinetic code, XGC0, with an ideal MHD linear stability analysis code, ELITE, and an extended MHD initial value code such as M3D or NIMROD. XGC0 includes the neoclassical ion-electron-neutral dynamics needed to simulate pedestal growth near the separatrix. The Kepler workflow processes the XGC0 simulation results into simple images that can be selected and displayed via the Dashboard, a monitoring tool implemented in AJAX allowing the scientist to track computational resources, examine running and archived jobs, and view key physics data, all within a standard Web browser. The XGC0 simulation is monitored for the conditions needed to trigger an ELM crash by periodically assessing the edge plasma pressure and current density profiles using the ELITE code. If an ELM crash is triggered, the Kepler workflow launches the M3D code on a moderate-size Opteron cluster to simulate the nonlinear ELM crash and to compute the relaxation of plasma profiles after the crash. This process is monitored through periodic outputs of plasma fluid quantities that are automatically visualized with AVS/Express and may be displayed on the Dashboard. Finally, the Kepler workflow archives all data outputs and processed images using HPSS, as well as provenance information about the software and hardware used to create the simulation. The complete process of preparing, executing and monitoring a coupled-code simulation of the edge pressure pedestal buildup and the ELM cycle using the Kepler scientific workflow system is described in this paper

    Experimental observation of the crystallization of a paired holon state

    Full text link
    A new excitation is observed at 201 meV in the doped-hole ladder cuprate Sr14_{14}Cu24_{24}O41_{41}, using ultraviolet resonance Raman scattering with incident light at 3.7 eV polarized along the direction of the rungs. The excitation is found to be of charge nature, with a temperature independent excitation energy, and can be understood via an intra-ladder pair-breaking process. The intensity tracks closely the order parameter of the charge density wave in the ladder (CDWL_L), but persists above the CDWL_L transition temperature (TCDWLT_{CDW_L}), indicating a strong local pairing above TCDWLT_{CDW_L}. The 201 meV excitation vanishes in La6_{6}Ca8_{8}Cu24_{24}O41+δ_{41+\delta}, and La5_{5}Ca9_{9}Cu24_{24}O41_{41} which are samples with no holes in the ladders. Our results suggest that the doped holes in the ladder are composite bosons consisting of paired holons that order below TCDWT_{CDW}.Comment: Accepted for publication in Physical Review Letters (4 figures
    corecore