12,056 research outputs found
Some empirical evidences on ASEAN 5 fiscal policy regime and monetary and fiscal policy interactions
The interest of common currency among Asian countries have spurred many events happening for the past few years, notably the declaration of Asian Currency Unit in 2006 by Asia Development Bank (ADB). Hence, research papers examining on the integration of monetary policies are abundance. However, paper on examining fiscal policy regime and interaction between monetary and fiscal policy on ASEAN countries, is lacking. The success of monetary union relies on the price stability of member nations. However, joining a monetary union means the lost of monetary policy sovereignty. Therefore, fiscal policy turns to be the next important tool to maintain price stability. This is reflected from the EMU countries after year 1999, where national monetary policies are completely centralized to the European Central Bank (ECB). The European System of Central Banks (ESCB) combines unity of decisions with participation of national central banks in the
decision making process and implementation. Nevertheless, national fiscal policies of the member countries are still in the hands of the national governments.
This paper intents to examine the type of fiscal policy regime practiced by ASEAN 5 countries. Using macro-economic data for Indonesia, Malaysia, Philippines, Singapore and Thailand, the interrelationship of government surplus/deficits and liabilities is analyzed using Correlation test, Vector Auto-regression (VAR) and Impulse response (IR) function to determine whether a Ricardian
or Non-Ricardian fiscal policy has been implemented. Also, comparison of monetary and fiscal policy interactions between some EMU countries and ASEAN 5 are made. The results indicate interactions among inter EMU countries and inter ASEAN countries are generally comparable
Thermal analysis comparison between two random glass fibre reinforced thermoplastic matrix composites bonded by adhesives using microwaves: preliminary results
[Abstract]: This paper compares the thermal analysis of two types of random glass fibre reinforced thermoplastic matrix composites joined by adhesives using microwave energy. Fixed frequency, 2.45 GHz, microwave facility is used to join thirty three percent by weight random glass fibre reinforced polystyrene composite [PS/GF (33%)] and thirty three percent by weight random glass fibre reinforced low density polyethylene composite [LDPE/GF (33%)]. The facility used is shown in Figure 1. With a given power level, the composites were exposed to various exposure times to microwave irradiation. The primer or coupling agent used was 5-minute two-part adhesive. The heat distribution of the samples of the two types of composites was analysed and compared. The relationship between the heat distribution and the lap shear strength of the samples was also compared and discussed
Weak phase stiffness and mass divergence of superfluid in underdoped cuprates
Despite more than two decades of intensive investigations, the true nature of
high temperature (high-) superconductivity observed in the cuprates
remains elusive to the researchers. In particular, in the so-called
`underdoped' region, the overall behavior of superconductivity deviates
from the standard theoretical description pioneered by Bardeen,
Cooper and Schrieffer (BCS). Recently, the importance of phase fluctuation of
the superconducting order parameter has gained significant support from various
experiments. However, the microscopic mechanism responsible for the
surprisingly soft phase remains one of the most important unsolved puzzles.
Here, opposite to the standard BCS starting point, we propose a simple,
solvable low-energy model in the strong coupling limit, which maps the
superconductivity literally into a well-understood physics of superfluid in a
special dilute bosonic system of local pairs of doped holes. In the
prototypical material (LaSr)CuO, without use of
any free parameter, a -wave superconductivity is obtained for doping above
, below which unexpected incoherent -wave pairs dominate.
Throughout the whole underdoped region, very soft phases are found to originate
from enormous mass enhancement of the pairs. Furthermore, a striking mass
divergence is predicted that dictates the occurrence of the observed quantum
critical point. Our model produces properties of the superfluid in good
agreement with the experiments, and provides new insights into several current
puzzles. Owing to its simplicity, this model offers a paradigm of great value
in answering the long-standing challenges in underdoped cuprates
ZnO layers deposited by Atomic Layer Deposition
The structure of 40 nm thick epitaxial ZnO layers grown on single crystalline
sapphire and GaN substrates by atomic layer deposition has been studied using transmission
electron microscopy. The growth is carried out between 150°C and 300°C without any buffer
layer using di-ethyl zinc and water precursors. The ZnO layer on sapphire is found to be
polycrystalline, which is probably due to the large misfit (~15 %) and the relatively low
deposition temperature. However, the small misfit (~1.8 %) between the ZnO layer that is
deposited on GaN at 300°C resulted in a high quality single crystalline layer
Joining of thirty three percent by weight random glass fibre reinforced polystyrene using variable frequency microwave
[Abstract]: This paper extends the range of applications for Variable Frequency Microwave (VFM) (2 – 18 GHz) facilities to joining thirty three percent by weight glass fibre reinforced polystyrene composite [PS/GF (33%)]. With a given power level, the composite was exposed to various exposure times to microwave irradiation. The primer or coupling agent used was 5-minute two-part adhesive containing 100% liquid epoxy and 8% amine, i.e. Araldite, which was more readily microwave reactive than the composite itself. Bond strengths of the joints were lap shear tested and results were compared with those obtained using fixed frequency (2.45 GHz) microwave processing. The VFMF was operated under software control, which provided automatic data logging facilities. The maximum lap shear bond strength of joint was 430 N/cm2 using variable frequency microwave facility while that obtained by fixed frequency microwave configuration was only 331 N/cm2. The former is nearly 30% stronger than the latter
Permittivity measurement of thermoplastic composites at elevated temperature
[Abstract]: The material properties of greatest importance in microwave processing of a dielectric are the complex relative permittivity Epsilon = Epsilon' - jEpsilon'', and the loss tangent, tan Delta = Epsilon'/Epsilon''. This paper describes two convenient laboratory based methods to obtain Epsilon', Epsilon'' and hence tan Delta of fibre-reinforced thermoplastic (FRTP) composites. One method employs a microwave network analyser in conjunction with a waveguide transmission technique, chosen because it provides the widest possible frequency range with high accuracy. The values of the dielectric constant and dielectric loss of glass fibre reinforced (33%) low density polyethylene, LDPE/GF (33%), polystyrene, PS/GF (33%), and Nylon 66/GF (33%), were obtained. Results are compared with those obtained by another method using a high-temperature dielectric probe
Variable frequency microwave (VFM) processing facilities and application in processing thermoplastic matrix composites
Microwave processing of materials is a relatively new technology advancement alternative that provides new approaches for enhancing material properties as well as economic advantages through energy savings and accelerated product development. Factors that hinder the use of microwaves in materials processing are declining, so that prospect for the development of this technology seem to be very promising. The two mechanisms of orientation polarisation and interfacial space charge polarisation, together with dc conductivity, form the basis of high frequency heating. Clearly, advantages in utilising microwave technologies for processing materials include penetration radiation, controlled electric field distribution and selective and volumetric heating. However, the most commonly used facilities for microwave processing materials are of fixed frequency, e.g. 2.45 GHz. This paper presents a state-of-the-art review of microwave technologies, processing methods and industrial applications, using variable frequency microwave (VFM) facilities. This is a new alternative for microwave processing
- …