4,249 research outputs found

    Semiconductor nanoring lasers

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98671/1/ApplPhysLett_98_201105.pd

    Lasing in a metal-clad microring resonator

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98661/1/ApplPhysLett_98_131107.pd

    Interpretation of scanning tunneling quasiparticle interference and impurity states in cuprates

    Full text link
    We apply a recently developed method combining first principles based Wannier functions with solutions to the Bogoliubov-de Gennes equations to the problem of interpreting STM data in cuprate superconductors. We show that the observed images of Zn on the surface of Bi2_2Sr2_2CaCu2_2O8_8 can only be understood by accounting for the tails of the Cu Wannier functions, which include significant weight on apical O sites in neighboring unit cells. This calculation thus puts earlier crude "filter" theories on a microscopic foundation and solves a long standing puzzle. We then study quasiparticle interference phenomena induced by out-of-plane weak potential scatterers, and show how patterns long observed in cuprates can be understood in terms of the interference of Wannier functions above the surface. Our results show excellent agreement with experiment and enable a better understanding of novel phenomena in the cuprates via STM imaging.Comment: 5 pages, 5 figures, published version (Supplemental Material: 5 pages, 11 figures) for associated video file, see http://itp.uni-frankfurt.de/~kreisel/QPI_BSCCO_BdG_p_W.mp

    Long range magnetic ordering in Na2_2IrO3_3

    Full text link
    We report a combined experimental and theoretical investigation of the magnetic structure of the honeycomb lattice magnet Na2_2IrO3_3, a strong candidate for a realization of a gapless spin-liquid. Using resonant x-ray magnetic scattering at the Ir L3_3-edge, we find 3D long range antiferromagnetic order below TN_N=13.3 K. From the azimuthal dependence of the magnetic Bragg peak, the ordered moment is determined to be predominantly along the {\it a}-axis. Combining the experimental data with first principles calculations, we propose that the most likely spin structure is a novel "zig-zag" structure

    Fluctuation-induced forces between inclusions in a fluid membrane under tension

    Full text link
    We discuss the fluctuation-induced force, a finite-temperature analog of the Casimir force, between two inclusions embedded in a fluid membrane under tension. We suggest a method to calculate this Casimir interaction in the most general case, where membrane fluctuations are governed by the combined action of surface tension, bending modulus, and the Gaussian rigidity. We find that the surface tension strongly modifies the power law in the separation dependence of the Casimir interaction. This results in a strong suppression of the Casimir force at separations beyond a characteristic length, which could affect protein aggregation dynamics in cell membranes.Comment: 4 pages, 1 figur

    The Band-Gap Problem in Semiconductors Revisited: Effects of Core States and Many-Body Self-Consistency

    Full text link
    A novel picture of the quasiparticle (QP) gap in prototype semiconductors Si and Ge emerges from an analysis based on all-electron, self-consistent, GW calculations. The deep-core electrons are shown to play a key role via the exchange diagram --if this effect is neglected, Si becomes a semimetal. Contrary to current lore, the Ge 3d semicore states (e.g., their polarization) have no impact on the GW gap. Self-consistency improves the calculated gaps --a first clear-cut success story for the Baym-Kadanoff method in the study of real-materials spectroscopy; it also has a significant impact on the QP lifetimes. Our results embody a new paradigm for ab initio QP theory

    Relevance of the Heisenberg-Kitaev model for the honeycomb lattice iridates A_2IrO_3

    Full text link
    Combining thermodynamic measurements with theoretical density functional and thermodynamic calculations we demonstrate that the honeycomb lattice iridates A2IrO3 (A = Na, Li) are magnetically ordered Mott insulators where the magnetism of the effective spin-orbital S = 1/2 moments can be captured by a Heisenberg-Kitaev (HK) model with Heisenberg interactions beyond nearest-neighbor exchange. Experimentally, we observe an increase of the Curie-Weiss temperature from \theta = -125 K for Na2IrO3 to \theta = -33 K for Li2IrO3, while the antiferromagnetic ordering temperature remains roughly the same T_N = 15 K for both materials. Using finite-temperature functional renormalization group calculations we show that this evolution of \theta, T_N, the frustration parameter f = \theta/T_N, and the zig-zag magnetic ordering structure suggested for both materials by density functional theory can be captured within this extended HK model. Combining our experimental and theoretical results, we estimate that Na2IrO3 is deep in the magnetically ordered regime of the HK model (\alpha \approx 0.25), while Li2IrO3 appears to be close to a spin-liquid regime (0.6 < \alpha < 0.7).Comment: Version accepted for publication in PRL. Additional DFT and thermodynamic calculations have been included. 6 pages of supplementary material include

    Association between actigraphy-derived physical activity and cognitive performance in patients with schizophrenia

    Get PDF
    An association between low levels of physical activity and impaired cognitive performance in schizophrenia has been proposed, but most studies have relied on self-report measures of activity. This study examined the association between actigraphy-derived physical activity and cognitive performance adjusting for multiple covariates in patients with schizophrenia. Patients with schizophrenia (n = 199) were recruited from chronic psychiatric wards, and 60 age-, sex- and body mass index-matched comparison participants were recruited from the staff of two hospitals and universities. Physical activity was assessed objectively for 7 days using an ActiGraph. Cognitive performance was assessed with the Cognitrone test from the Vienna Test System and the Grooved Pegboard Test. Demographic variables, metabolic parameters, positive and negative symptoms, duration of illness and hospitalization, and medication use were included as covariates. Pearson correlations and multivariable linear regressions were conducted to examine the associations between physical activity levels and cognitive performance. Patients with schizophrenia were less physically active and had poorer performance on attention/concentration and speed of processing than the comparison group. Patients with schizophrenia who spent more time in light physical activity showed better performance on attention/concentration (β = 0.198, p = 0.020) and speed of processing (β= −0.169, p = 0.048) tasks than those who were less active. Cognitive performance was also associated with moderate-vigorous physical activity, but the effect was no longer significant once light physical activity had been taken into account. This study provides evidence for a positive association between objectively measured light physical activity and cognitive performance in people with schizophrenia, after adjustment for multiple confounders

    Temperature dependent d-d excitations in manganites probed by resonant inelastic x-ray scattering

    Full text link
    We report the observation of temperature dependent electronic excitations in various manganites utilizing resonant inelastic x-ray scattering (RIXS) at the Mn K-edge. Excitations were observed between 1.5 and 16 eV with temperature dependence found as high as 10 eV. The change in spectral weight between 1.5 and 5 eV was found to be related to the magnetic order and independent of the conductivity. On the basis of LDA+U and Wannier function calculations, this dependence is associated with intersite d-d excitations. Finally, the connection between the RIXS cross-section and the loss function is addressed.Comment: 5 pages, 5 figure

    Unusual photoemission resonances of oxygen-dopant induced states in Bi2_{2}Sr2_2CaCu2_2O8+x_{8+x}

    Full text link
    We have performed an angular-resolved photoemission study of underdoped, optimally doped and overdoped Bi2_{2}Sr2_2CaCu2_2O8+x_{8+x} samples using a wide photon energy range (15 - 100 eV). We report a small and broad non-dispersive A1g_{1g} peak in the energy distribution curves whose intensity scales with doping. We attribute it to a local impurity state similar to the one observed recently by scanning tunneling spectroscopy and identified as the oxygen dopants. Detailed analysis of the resonance profile and comparison with the single-layered Bi2_{2}Sr2_2CuO6+x_{6+x} suggest a mixing of this local state with Cu via the apical oxygens.Comment: 4 pages, 4 figure
    corecore