315 research outputs found

    Cascade of Solitonic Excitations in a Superfluid Fermi gas: From Planar Solitons to Vortex Rings and Lines

    Get PDF
    We follow the time evolution of a superfluid Fermi gas of resonantly interacting [superscript 6]Li atoms after a phase imprint. Via tomographic imaging, we observe the formation of a planar dark soliton, its subsequent snaking, and its decay into a vortex ring, which, in turn, breaks to finally leave behind a single solitonic vortex. In intermediate stages, we find evidence for an exotic structure resembling the Φ soliton, a combination of a vortex ring and a vortex line. Direct imaging of the nodal surface reveals its undulation dynamics and its decay via the puncture of the initial soliton plane. The observed evolution of the nodal surface represents dynamics beyond superfluid hydrodynamics, calling for a microscopic description of unitary fermionic superfluids out of equilibrium.National Science Foundation (U.S.)United States. Army Research Office. Multidisciplinary University Research Initiative on AtomtronicsUnited States. Air Force Office of Scientific Research. Presidential Early Career Award for Scientists and EngineersUnited States. Air Force Office of Scientific Research. Multidisciplinary University Research Initiative on Exotic PhasesDavid & Lucile Packard Foundatio

    Spin transport in polaronic and superfluid Fermi gases

    Get PDF
    We present measurements of spin transport in ultracold gases of fermionic 6Li in a mixture of two spin states at a Feshbach resonance. In particular, we study the spin-dipole mode, where the two spin components are displaced from each other against a harmonic restoring force. We prepare a highly imbalanced, or polaronic, spin mixture with a spin-dipole excitation and we observe strong, unitarity-limited damping of the spin-dipole mode. In gases with small spin imbalance, below the Pauli limit for superfluidity, we observe strongly damped spin flow even in the presence of a superfluid core. This indicates strong mutual friction between superfluid and polarized normal spins, possibly involving Andreev reflection at the superfluid–normal interface.National Science Foundation (U.S.)United States. Army Research Office (DARPA OLE program)David & Lucile Packard FoundationAlfred P. Sloan FoundationUnited States. Air Force Office of Scientific Research (AFOSR-MURI)United States. Air Force Office of Scientific Research (AFOSR-YIP)United States. Army Research Office (ARO-MURI)United States. Office of Naval ResearchUnited States. Defense Advanced Research Projects Agency (DARPA YFA

    Evolution of Fermion Pairing from Three to Two Dimensions

    Full text link
    We follow the evolution of fermion pairing in the dimensional crossover from 3D to 2D as a strongly interacting Fermi gas of 6^6Li atoms becomes confined to a stack of two-dimensional layers formed by a one-dimensional optical lattice. Decreasing the dimensionality leads to the opening of a gap in radio-frequency spectra, even on the BCS-side of a Feshbach resonance. The measured binding energy of fermion pairs closely follows the theoretical two-body binding energy and, in the 2D limit, the zero-temperature mean-field BEC-BCS theory.Comment: 5 pages, 4 figure

    Motion of a Solitonic Vortex in the BEC-BCS Crossover

    Get PDF
    We observe a long-lived solitary wave in a superfluid Fermi gas of 6^6Li atoms after phase-imprinting. Tomographic imaging reveals the excitation to be a solitonic vortex, oriented transverse to the long axis of the cigar-shaped atom cloud. The precessional motion of the vortex is directly observed, and its period is measured as a function of the chemical potential in the BEC-BCS crossover. The long period and the correspondingly large ratio of the inertial to the bare mass of the vortex are in good agreement with estimates based on superfluid hydrodynamics that we derive here using the known equation of state in the BEC-BCS crossover

    Controllable tunability of a Chern number within the electronic-nuclear spin system in diamond

    Full text link
    Chern numbers are gaining traction as they characterize topological phases in various physical systems. However, the resilience of the system topology to external perturbations makes it challenging to experimentally investigate transitions between different phases. In this study, we demonstrate the transitions of Chern number from 0 to 3, synthesized in an electronic-nuclear spin system associated with the nitrogen-vacancy (NV) centre in diamond. The Chern number is characterized by the number of degeneracies enclosed in a control Hamiltonian parameter sphere. The topological transitions between different phases are depicted by varying the radius and offset of the sphere. We show that the measured topological phase diagram is not only consistent with the numerical calculations but can also be mapped onto an interacting three-qubit system. The NV system may also allow access to even higher Chern numbers, which can be applied to exploring exotic topology or topological quantum information

    Scanning X-ray Diffraction Microscopy for Diamond Quantum Sensing

    Full text link
    Understanding nano- and micro-scale crystal strain in CVD diamond is crucial to the advancement of diamond quantum technologies. In particular, the presence of such strain and its characterization present a challenge to diamond-based quantum sensing and information applications -- as well as for future dark matter detectors where directional information of incoming particles is encoded in crystal strain. Here, we exploit nanofocused scanning X-ray diffraction microscopy to quantitatively measure crystal deformation from growth defects in CVD diamond with high spatial and strain resolution. Combining information from multiple Bragg angles allows stereoscopic three-dimensional reconstruction of strained volumes; the diffraction results are validated via comparison to optical measurements of the strain tensor based on spin-state-dependent spectroscopy of ensembles of nitrogen vacancy (NV) centers in the diamond. Our results open a path towards directional detection of dark matter via X-ray measurement of crystal strain, and provide a new tool for diamond growth analysis and improvement of defect-based sensing.Comment: 15 pages, 17 figures (incl. Supplemental Material

    The classical limit for a class of quantum baker's maps

    Get PDF
    We show that the class of quantum baker's maps defined by Schack and Caves have the proper classical limit provided the number of momentum bits approaches infinity. This is done by deriving a semi-classical approximation to the coherent-state propagator.Comment: 18 pages, 5 figure
    • …
    corecore