49 research outputs found

    Promoter hypomethylation and reactivation of MAGE-A1 and MAGE-A3 genes in colorectal cancer cell lines and cancer tissues

    Get PDF
    AIM: To verify the expression and methylation status of the MAGE-A1 and MAGE-A3 genes in colorectal cancer tissues and cancer cell lines. METHODS: We evaluated promoter demethylation status of the MAGE-A1 and MAGE-A3 genes by RT-PCR analysis and methylation-specific PCR (MS-PCR), as well as sequencing analysis, after sodium bisulfite modification in 32 colorectal cancer cell lines and 87 cancer tissues. RESULTS: Of the 32 cell lines, MAGE-A1 and MAGE-A3 expressions were observed in 59% and 66%, respectively. Subsequent to sodium bisulfite modification and MS-PCR analysis, the promoter hypomethylation of MAGE-A1 and MAGE-A3 was confirmed in both at 81% each. Promoter hypomethylation of MAGE-A1 and MAGE-A3 in colorectal cancer tissues was observed in 43% and 77%, respectively. Hypomethylation of MAGE-A1 and MAGE-A3 genes in corresponding normal tissues were observed in 2% and 6%, respectively. CONCLUSION: The promoter hypomethylation of MAGE genes up-regulates its expression in colorectal carcinomas as well as in gastric cancers and might play a significant role in the development and progression of human colorectal carcinomas

    Improving gastric cancer preclinical studies using diverse in vitro and in vivo model systems

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.Abstract Background Biomarker-driven targeted therapy, the practice of tailoring patients treatment to the expression/activity levels of disease-specific genes/proteins, remains challenging. For example, while the anti-ERBB2 monoclonal antibody, trastuzumab, was first developed using well-characterized, diverse in vitro breast cancer models (and is now a standard adjuvant therapy for ERBB2-positive breast cancer patients), trastuzumab approval for ERBB2-positive gastric cancer was largely based on preclinical studies of a single cell line, NCI-N87. Ensuing clinical trials revealed only modest patient efficacy, and many ERBB2-positive gastric cancer (GC) patients failed to respond at all (i.e., were inherently recalcitrant), or succumbed to acquired resistance. Method To assess mechanisms underlying GC insensitivity to ERBB2 therapies, we established a diverse panel of GC cells, differing in ERBB2 expression levels, for comprehensive in vitro and in vivo characterization. For higher throughput assays of ERBB2 DNA and protein levels, we compared the concordance of various laboratory quantification methods, including those of in vitro and in vivo genetic anomalies (FISH and SISH) and xenograft protein expression (Western blot vs. IHC), of both cell and xenograft (tissue-sectioned) microarrays. Results The biomarker assessment methods strongly agreed, as did correlation between RNA and protein expression. However, although ERBB2 genomic anomalies showed good in vitro vs. in vivo correlation, we observed striking differences in protein expression between cultured cells and mouse xenografts (even within the same GC cell type). Via our unique pathway analysis, we delineated a signaling network, in addition to specific pathways/biological processes, emanating from the ERBB2 signaling cascade, as a potential useful target of clinical treatment. Integrated analysis of public data from gastric tumors revealed frequent (10 โ€“ 20ย %) amplification of the genes NFKBIE, PTK2, and PIK3CA, each of which resides in an ERBB2-derived subpathway network. Conclusion Our comprehensive bioinformatics analyses of highly heterogeneous cancer cells, combined with tumor omics profiles, can optimally characterize the expression patterns and activity of specific tumor biomarkers. Subsequent in vitro and in vivo validation, of specific disease biomarkers (using multiple methodologies), can improve prediction of patient stratification according to drug response or nonresponse

    The telomere maintenance mechanism spectrum and its dynamics in gliomas

    Get PDF
    Background : The activation of the telomere maintenance mechanism (TMM) is one of the critical drivers of cancer cell immortality. In gliomas, TERT expression and TERT promoter mutation are considered to reliably indicate telomerase activation, while ATRX mutation and/or loss indicates an alternative lengthening of telomeres (ALT). However, these relationships have not been extensively validated in tumor tissues. Methods : Telomerase repeated amplification protocol (TRAP) and C-circle assays were used to profile and characterize the TMM cross-sectionally (n = 412) and temporally (n = 133) across glioma samples. WES, RNA-seq, and NanoString analyses were performed to identify and validate the genetic characteristics of the TMM groups. Results : We show through the direct measurement of telomerase activity and ALT in a large set of glioma samples that the TMM in glioma cannot be defined solely by the combination of telomerase activity and ALT, regardless of TERT expression, TERT promoter mutation, and ATRX loss. Moreover, we observed that a considerable proportion of gliomas lacked both telomerase activity and ALT. This telomerase activation-negative and ALT negative group exhibited evidence of slow growth potential. By analyzing a set of longitudinal samples from a separate cohort of glioma patients, we discovered that the TMM is not fixed and can change with glioma progression. Conclusions : This study suggests that the TMM is dynamic and reflects the plasticity and oncogenicity of tumor cells. Direct measurement of telomerase enzyme activity and evidence of ALT should be considered when defining TMM. An accurate understanding of the TMM in glioma is expected to provide important information for establishing cancer management strategies.This research was supported by the Bio & Medical Technology Development Program of the National Research Foundation (NRF), funded by the Ministry of Science & ICT (NRF-2018M3A9H3021707), and the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (HI21C0239)

    Long Non-Coding RNA GAS5 Promotes BAX Expression by Competing with microRNA-128-3p in Response to 5-Fluorouracil

    No full text
    The acquisition of drug resistance is a major hurdle for effective cancer treatment. Although several efforts have been made to overcome drug resistance, the underlying mechanisms have not been fully elucidated. This study investigated the role of long non-coding RNA (lncRNA) growth arrest-specific 5 (GAS5) in drug resistance. GAS5 was found to be downregulated in colon cancer cell lines that are resistant to 5-fluorouracil (5-FU). Downregulation of GAS5 decreased the viability of HCT116 cells and the level of the pro-apoptotic BAX protein, while GAS5 overexpression promoted cell death in response to 5-FU. The interaction between GAS5 and BAX mRNA was investigated using MS2-tagged RNA affinity purification (MS2-trap) followed by RT-qPCR, and the results showed that GAS5 bound to the 3โ€ฒ-untranslated region of BAX mRNA and enhanced its expression by interfering with the inhibitory effect of microRNA-128-3p, a negative regulator of BAX. In addition, ectopic expression of GAS5 increased the sensitivity of resistant cells in response to anti-cancer drugs. These results suggest that GAS5 promoted cell death by interfering with miR-128-3p-mediated BAX downregulation. Therefore, GAS5 overexpression in chemo-resistant cancer cells may be a potential strategy to improve the anti-cancer efficacy of drugs

    Identification of genes inducing resistance to ionizing radiation in human rectal cancer cell lines: re-sensitization of radio-resistant rectal cancer cells through down regulating NDRG1

    Get PDF
    Abstract Background Resistance to preoperative radiotherapy is a major clinical problem in the treatment for locally advanced rectal cancer. The role of NDRG1 in resistance to ionizing radiation in rectal cancer has not been fully elucidated. This study aimed to investigate the effect of the reduced intracellular NDRG1 expression on radio-sensitivity of human rectal cancer cells for exploring novel approaches for treatment of rectal cancer. Methods Three radio-resistant human rectal cancer cell lines (SNU-61R80Gy, SNU-283R80Gy, and SNU-503R80Gy) were established from human rectal cancer cell lines (SNU-61, SNU-283, and SNU-503) using total 80ย Gy of fractionated irradiation. Microarray analysis was performed to identify differently expressed genes in newly established radio-resistant human rectal cancer cells compared to parental rectal cancer cells. Results A microarray analysis indicated the RNA expression of five genes (NDRG1, ERRFI1, H19, MPZL3, and UCA1) was highly increased in radio-resistant rectal cancer cell lines. Short hairpin RNA-mediated silencing of NDRG1 sensitized rectal cancer cell lines to clinically relevant doses of radiation by causing more DNA double strand breakages to rectal cancer cells when exposed to radiation. Conclusions Targeting NDRG1 represents a promising strategy to increase response to radiotherapy in human rectal cancer

    Presence of CCK-A, B receptors and effect of gastrin and cholecystokinin on growth of pancreatobiliary cancer cell lines

    No full text
    AIM: To investigate the effects of gastrin and cholecystokinin (CCK) and their specific antagonists on the growth of pancreatic and biliary tract cancer cell lines. METHODS: Five pancreatic and 6 biliary cancer cell lines with 2 conrtol cells were used in this study. Cell proliferation study was done using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) test and direct cell count method. Reverse transcription-polymerase chain reaction (RT-PCR) and slot blot hybridization were performed to examine and quantify the expression of hormonal receptors in these cell lines. RESULTS: SNU-308 showed a growth stimulating effect by gastrin-17, as did SNU-478 by both gastrin-17 and CCK-8. The trophic effect of these two hormones was completely blocked by specific antagonists (L-365, 260 for gastrin and L-364, 718 for CCK). Other cell lines did not respond to gastrin or CCK. In RT-PCR, the presence of CCK-A receptor and CCK-B/gastrin receptor mRNA was detected in all biliary and pancreatic cancer cell lines. In slot blot hybridization, compared to the cell lines which did not respond to hormones, those that responded to hormones showed high expression of receptor mRNA. CONCLUSION: Gastrin and CCK exert a trophic action on some of the biliary tract cancers

    Alpha-tocopheryl succinate, in contrast to alpha-tocopherol and alpha-tocopheryl acetate, inhibits prostaglandin E2 production in human lung epithelial cells

    No full text
    The production of prostaglandin E2 (PGE2), a key proinflammatory mediator, is regulated by the availability of its substrate, arachidonic acid (AA), and the activity of the enzyme cyclooxygenase (COX). Increased PGE2 production and COX-2 expression have been observed frequently in specimens from lung cancer patients. Agents that decrease PGE2 production may prevent the initiation and progression of lung cancer. We, therefore, tested the effects of alpha-tocopherol (alphaTOL) analogs on PGE2 production in human lung epithelial cells. Alpha-tocopheryl succinate (alphaTOS), but not alphaTOL or alpha-tocopheryl acetate (alphaTOA), inhibited the phorbol 12-myristate 13-acetate (PMA)-stimulated PGE2 production in three human lung epithelial cell lines (BEAS-2B, H460 and A549 cells). The effect of these compounds on PGE2 production was not correlated with their antioxidant activities, since alphaTOS alone did not inhibit PMA-induced generation of reactive oxygen species. alphaTOS had no effect on PMA-induced AA release or COX-2 expression, although post-incubation with alphaTOS inhibited COX activity and prostaglandin (PGE2 and PGF(2alpha)) production in PMA-stimulated cells. alphaTOS also blocked the COX activity in A549 cells with endogenous high levels of COX enzymes in the absence of PMA stimulation. In addition, the ability of alphaTOS to inhibit COX was affected by AA concentration, suggesting that alphaTOS may compete with AA for interaction with COX proteins. These results suggest that alphaTOS inhibits COX activity, thereby inhibiting PGE2 production in human lung epithelial cells, despite the lack of antioxidant activity. Administration of alphaTOS may block inflammatory responses mediated by PGE2, thereby inhibiting the initiation and progression of lung cancer

    Preclinical Modeling of Osimertinib for NSCLC With EGFR Exon 20 Insertion Mutations

    No full text
    Introduction: NSCLC with EGFR exon 20 insertion mutations is the third most common type of EGFR-mutant NSCLC and is resistant to EGFR tyrosine kinase inhibitors (TKIs). This study was conducted to evaluate the efficacies of first-to third-generation EGFR TKIs against NSCLC cells harboring EGFR exon 20 insertion mutations. Methods: We developed seven EGFR exon 20 insertion-mutant Ba/F3 models and one patient-derived NSCLC (SNU-3173) of subtypes A763insFQEA, V769insASV, D770insSVD, D770insNPG, P772insPR, H773insH, H773insNPH, and H773insAH. Cell viability assays, immunoblotting, and N-ethyl-N-nitrosourea mutagenesis screenings were performed. EGFR exon 20 insertion-mutant structures and couplings with osimertinib, a third-generation EGFR TKI, were modeled and compared. Results: EGFR exon 20 insertion-mutant NSCLC cells, excluding EGFR A763insFQEA, were resistant to first-generation EGFR TKIs (concentration that inhibits 50% [IC50], 1.1 +/- 0.067 to 5.4 +/- 0.115 mu M). Mutants were sensitive to second-generation EGFR TKIs (IC50, 0.02 +/- 0.0002 to 161.8 +/- 18.7nM), except EGFR H773insH (IC50, 46.3 +/- 8.0 to 352.5 +/- 22.7nM). The IC50 ratios for mutant to wild-type cells were higher than those for third-generation EGFR TKIs. Third-generation EGFR TKI osimertinib was highly potent against EGFR exon 20 insertion-mutant cells (IC50, 14.7-62.7 nM), including EGFR H773insH, and spared wild-type EGFR cells. N-ethyl-N-nitrosourea mutagenesis screening of EGFR exon 20 insertion-mutant Ba/F3 cells showed various second sites for EGFR mutations, mostly at exons 20 and 21, including E762K, P794S, and G796D. In addition, osimertinib-resistant cells were established by stepwise exposure to osimertinib and harbored EGFR E762K mutation. Conclusions: Osimertinib is active against EGFR exon 20 insertion- mutant NSCLC and flexibly binds within drug-binding pockets in preclinical models. (C) 2019 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.
    corecore