37 research outputs found

    Computation of All Stabilizing PID Gain for Second-Order Delay System

    Get PDF
    The problem of stabilizing a second-order delay system using classical proportional-integral-derivative (PID) controller is considered. An extension of the Hermite-Biehler theorem, which is applicable to quasipolynomials, is used to seek the set of complete stabilizing PID parameters. The range of admissible proportional gains is determined in closed form. For each proportional gain, the stabilizing set in the space of the integral and derivative gains is shown to be either a trapezoid or a triangle

    Multi-objective Optimization For The Dynamic Multi-Pickup and Delivery Problem with Time Windows

    Full text link
    The PDPTW is an optimization vehicles routing problem which must meet requests for transport between suppliers and customers satisfying precedence, capacity and time constraints. We present, in this paper, a genetic algorithm for multi-objective optimization of a dynamic multi pickup and delivery problem with time windows (Dynamic m-PDPTW). We propose a brief literature review of the PDPTW, present our approach based on Pareto dominance method and lower bounds, to give a satisfying solution to the Dynamic m-PDPTW minimizing the compromise between total travel cost and total tardiness time. Computational results indicate that the proposed algorithm gives good results with a total tardiness equal to zero with a tolerable cost.Comment: arXiv admin note: text overlap with arXiv:1101.339

    A fast identification algorithm for systems with delayed inputs

    Get PDF
    International audienceA fast identification algorithm is proposed for systems with delayed inputs. It is based on a non-asymptotic distributional estimation technique initiated in the framework of systems without delay. Such technique leads to simple realization schemes, involving integrators, multipliers and piecewise polynomial or exponential time functions. Thus, it allows for a real time implementation. In order to introduce a generalization to systems with input delay, three simple examples are presented here. The first illustration is a first order model with delayed input and noise. Then, a second order system driven through a transmission line is considered. A third example shows a possible link between simultaneous identification and generalized eigenvalue problems

    Online Implementation of Inequality Constraints Monitoring in Dynamical Systems

    Get PDF
    This paper deals with fault detection in dynamical systems where the state variables evolutions are constrained by inequality constraints. The latter corresponds either to physical limitations or to safety specification. Two classical residual generation approaches are studied, namely, parity space and unknown input observer approaches, and are extended to monitor the inequality constraints. A practical implementation on a real process is performed and permits to validate the relevance of the proposed methods

    Online Implementation of Inequality Constraints Monitoring in Dynamical Systems

    Get PDF
    This paper deals with fault detection in dynamical systems where the state variables evolutions are constrained by inequality constraints. The latter corresponds either to physical limitations or to safety specification. Two classical residual generation approaches are studied, namely, parity space and unknown input observer approaches, and are extended to monitor the inequality constraints. A practical implementation on a real process is performed and permits to validate the relevance of the proposed methods

    Identification algébrique du retard - Application à une soufflerie de séchage

    Get PDF
    Dans cette communication, on étudie l'identification en ligne du retard par l'approche algébrique. Une présentation de cette technique d'identification est effectuée. Une application à une soufflerie de séchage est envisagée. L'air est soufflé par un ventilateur tournant à une vitesse constante. Cette soufflerie est décrite par un modèle mathématique de type entrée-sortie, linéaire, continu, monovariable, du premier ordre, avec retard, opérant dans un cadre essentiellement stationnaire. Les résultats expérimentaux permettant de valider les résultats analytiques, sont présentés et commentés

    Multimodal Transport Systems

    No full text
    International audienceThe use and management of multimodal transport systems, including car-pooling and goods transportation, have become extremely complex, due to their large size (sometimes several thousand variables), the nature of their dynamic relationships as well as the many constraints to which they are subjected. The managers of these systems must ensure that the system works as efficiently as possible by managing the various causes of malfunction of the transport system (vehicle breakdowns, road obstructions, accidents, etc.). The detection and resolution of conflicts, which are particularly complex and must be dealt with in real time, are currently processed manually by operators. However, the experience and abilities of these operators are no longer sufficient when faced with the complexity of the problems to be solved. It is thus necessary to provide them with an interactive tool to help with the management of disturbances, enabling them to identify the different disturbances, to characterize and prioritize these disturbances, to process them by taking into account their specifics and to evaluate the impact of the decisions in real time. Each chapter of this book can be broken down into an approach for solving a transport problem in 3 stages, i.e. modeling the problem, creating optimization algorithms and validating the solutions. The management of a transport system calls for knowledge of a variety of theories (problem modeling tools, multi-objective problem classification, optimization algorithms, etc.). The different constraints increase its complexity drastically and thus require a model that represents as far as possible all the components of a problem in order to better identify it and propose corresponding solutions. These solutions are then evaluated according to the criteria of the transport providers as well as those of the city transport authorities. This book consists of a state of the art on innovative transport systems as well as the possibility of coordinating with the current public transport system and the authors clearly illustrate this coordination within the framework of an intelligent transport system
    corecore