7 research outputs found

    Stability of Ion Exchange Membranes in Electrodialysis

    No full text
    During electrodialysis the ion exchange membranes are affected by such factors as passage of electric current, heating, tangential flow of solution and exposure to chemical agents. It can potentially cause the degradation of ion exchange groups and of polymeric backbone, worsening the performance of the process and necessitating the replacement of the membranes. This article aims to review how the composition and the structure of ion exchange membranes change during the electrodialysis or the studies imitating it

    Regulation of Incentives for Use of Renewable Energy at the Level of Regional Legislation in Federal States, Using the Russian Federation as an Example

    No full text
    Effective use of renewable energy requires a system of energy legislation that meets modern challenges. Although, in large countries, climate and socioeconomic factors in different regions can significantly vary and can affect the regional legislation regulating renewable energy sources, careful reproduction of good practices and successful experiences of other regions are a good basis for the development of legislation. The comparative method of legal research was the main method used to achieve the objectives set in this study. Based on the results, a number of recommendations were developed to consolidate and expand the powers of regional regulators in the field of renewable energy, to include an economic assessment of the effectiveness of state programs, to use tax incentives for renewable energy projects, and to introduce restrictions on the use of petroleum products. Recommendations were also made to improve regional legislation on renewable energy sources in terms of legal techniques. Further development of this study would contribute to the improvement of regional legal regulation and would accelerate the transition to “green” energy

    Stability of Properties of Layer-by-Layer Coated Membranes under Passage of Electric Current

    No full text
    Electrodialysis with layer-by-layer coated membranes is a promising method for the separation of monovalent and polyvalent ions. Since the separation selectivity is significantly reduced in the presence of defects in the multilayer system, the stability of the modifiers becomes an important issue. This article reports the i-V curves of layer-by-layer coated membranes based on the heterogeneous MK-40 membrane before and after 50 h long electrodialysis of a solution containing sodium and calcium ions at an underlimiting current density, and the values of concentrations of cations in the desalination chamber during electrodialysis. It is shown that the transport of bivalent ions through the modified membranes is reduced throughout the electrodialysis by about 50%, but the operation results in decreased resistance of the membrane modified with polyethylenimine, which may suggest damage to the modifying layer. Even after electrodialysis, the modified membrane demonstrated experimental limiting current densities higher than that of the substrate, and in case of the membrane modified with polyallylamine, the limiting current density 10% higher than that of the substrate membrane

    Characterization of MK-40 Membrane Modified by Layers of Cation Exchange and Anion Exchange Polyelectrolytes

    No full text
    Coating of ion exchange membranes used in electrodialysis with layers of polyelectrolytes is a proven approach that allows for the increasing of the limiting current, the suppressing of sedimentation, the controlling of the intensity of generation of H+ and OH− ions, and also the improving of monovalent selectivity. However, in the case when two materials with the opposite sign of the charge of fixed groups come in contact, a bipolar boundary is created that can cause undesirable changes in the membrane properties. In this work, we used a MK-40 heterogeneous membrane on the surface of which a layer of polyethyleneimine was applied by adsorption from a solution as a model of heterogeneous membranes modified with oppositely charged polyelectrolyte. It was found that, on one hand, the properties of modified membrane were beneficial for electrodialysis, its limiting current did not decrease and the membrane even acquired a barrier to non-selective electrolyte transport. At the same time, the generation of H+ and OH− ions of low intensity arose, even in underlimiting current modes. It was also shown that despite the presence of a layer of polyethyleneimine, the surface charge of the modified membrane remained negative, which we associate with low protonation of polyethyleneimine at neutral pH

    Dependence of Electrochemical Properties of MK-40 Heterogeneous Membrane on Number of Adsorbed Layers of Polymers

    No full text
    The creation of monovalent selective ion exchange membranes benefits the desalination of surface waters by removing interfering monovalent ions while preserving polyvalent ionic nutrients. Studies of a promising method of layer-by-layer adsorption of polymers for the creation of monovalent selective coatings note a significant effect of the number of formed layers and of the nature of the external layer on the properties of the resulting membranes. This article reports the changes in properties of layer-by-layer coated heterogeneous membranes occurring at increasing numbers of layers that are attributed to the supposed intermixing of polymers between the layers, namely dependence of limiting current densities determined from i-V curve, enhanced electroconvection that was attributed to the appearing electrical heterogeneity of the surface, and the decreasing monovalent selectivity in electrodialysis of mixed NaCl + CaCl2 solution (from 1.33 to about 1) between the samples with five and six to eight layers of polymers

    Short-Term Stability of Electrochemical Properties of Layer-by-Layer Coated Heterogeneous Ion Exchange Membranes

    No full text
    Layer-by-layer adsorption allows the creation of versatile functional coatings for ion exchange membranes, but the stability of the coating and resulting properties of modified membranes in their operation is a frequently asked question. This paper examines the changes in voltammetric curves of layer-by-layer coated cation exchange membranes and pH-metry of desalination chamber with a studied membrane and an auxiliary anion exchange membrane after short-term tests, including over-limiting current modes. The practical operation of the membranes did not affect the voltammetric curves, but enhanced the generation of H+ and OH− ions in a system with polyethylenimine modified membrane in Ca2+ containing solution. It is shown that a distinction between the voltammetric curves of the membranes modified and the different polyamines persists during the operation and that, in the case of polyethylenimine, there is an additional zone of growth of potential drop in voltammetric curves and stronger generation of H+ and OH− ions as indicated by pH-metry

    Layer-by-Layer Coating of MK-40 Heterogeneous Membrane with Polyelectrolytes Creates Samples with Low Electrical Resistance and Weak Generation of H+ and OH− Ions

    No full text
    Ion exchange membranes covered with layers of polyelectrolytes of alternating charges are characterized by very high monovalent selectivity. This allows the use of such membranes for electrodialytic fractionation of multicomponent solutions. However, the very existence of the boundary at which differently charged layers come in contact can hinder a membrane’s effectiveness by limiting its ion permeability, raising levels of H+ and OH− ions (thus shifting the pH) and increasing the electrical resistance of the membrane, which leads to increased energy consumption. To test how these properties would be changed, we created cheap layer-by-layer-modified membranes based on the heterogeneous MK-40 membrane, on which we adsorbed layers of polyallylamine and sulfonated polystyrene. We created samples with 3, 4, and 5 layers of polyelectrolytes and characterized them. We showed that the application of layers did not decrease the efficiency of the membrane, since the electrical resistance of the modified samples, which increased after application of the first oppositely charged layer, declined with the application of the following layers and became comparable to that of the substrate, while their limiting current density was higher and the shift of pH of treated solution was low in magnitude and comparable with that of the substrate membrane
    corecore