3 research outputs found

    Silver(I) complexes with phenolic Schiff bases: Synthesis, anti-bacterial evaluation and interaction with biomolecules

    Get PDF
    Novel Ag(I) complexes (2a–2c) with phenolic Schiff bases were synthesized using 4,6-di-tert-butyl-3-(((5-mercapto-1,3,4-thiadiazol-2-yl)imino)methyl)benzene-1,2-diol (1a), 4,6-di-tert-butyl-3-(((4-mercaptophe­nyl­)­imino)­methyl)benzene-1,2-diol (1b), and 4,6-di-tert-butyl-3-(((3-mercaptophenyl)imino)methyl)­benzene-1,2-diol (1c). They were examined by elemental analysis, FT-IR, UV-Vis, 1H-NMR spectroscopy, XRD, cyclic voltammetry, conductivity measurements, and biological methods. The complexes are characterized by distorted geometry of the coordination cores AgN2S2 (2c), AgNS (2b) and AgS2 (2a). These stable complexes were not typified by the intramolecular redox reaction in organic solvents resulting in the formation of silver nanoparticles (AgNPs). Antibacterial activity of 1a–1c and 2a–2c was evaluated in comparison with AgNPs and commonly used antibiotics. All the complexes were more active than the ligands against the bacteria tested (14), but they were less active than AgNPs and commonly used antibiotics. Both 1a–1c and their complexes 2a–2c exhibited the capability for the bovine heart Fe(III)-Cyt c reduction. The ligands 1b and 1c were characterized by the highest reduction rate among the compounds under study, and they showed a higher reducing ability (determined by cyclic voltammetry) as compared with that of their Ag(I) complexes 2b and 2c

    Synthesis, Characterization and Biological Activity of Hydrazones and Their Copper(II) Complexes

    No full text
    The fundamental importance of copper as a redox-active metal essential to the functioning of several metabolic enzymes provides a wide range of its biological activity pathways. Copper(II) coordination compounds are known to exhibit potent antiproliferative, antibacterial, nuclease, anti-inflammatory and antimycobacterial activities. Hydrazones are organic ligands commonly used for complexation with copper(II) that possess antibacterial, antiviral and antifungal properties. Copper–ligand interaction might facilitate charge delocalization and increase net hydrophobicity of the system, resulting in its enhanced pharmacological activity. Coordination compounds of Cu(II) with 4,6-di-tert-butyl-2,3-dihydroxybenzaldehyde derived hydrazone, nitrofurantoin and ftivazide have been synthesized, characterized by means of elemental and XRD analysis, FT-IR, UV-Vis and NMR spectroscopy and tested for antibacterial activity in vitro on Gram-positive and Gram-negative bacteria

    Synthesis, Characterization and Biological Activity of Hydrazones and Their Copper(II) Complexes

    No full text
    The fundamental importance of copper as a redox-active metal essential to the functioning of several metabolic enzymes provides a wide range of its biological activity pathways. Copper(II) coordination compounds are known to exhibit potent antiproliferative, antibacterial, nuclease, anti-inflammatory and antimycobacterial activities. Hydrazones are organic ligands commonly used for complexation with copper(II) that possess antibacterial, antiviral and antifungal properties. Copper–ligand interaction might facilitate charge delocalization and increase net hydrophobicity of the system, resulting in its enhanced pharmacological activity. Coordination compounds of Cu(II) with 4,6-di-tert-butyl-2,3-dihydroxybenzaldehyde derived hydrazone, nitrofurantoin and ftivazide have been synthesized, characterized by means of elemental and XRD analysis, FT-IR, UV-Vis and NMR spectroscopy and tested for antibacterial activity in vitro on Gram-positive and Gram-negative bacteria
    corecore