59 research outputs found

    Identifying an indoor air exposure limit for formaldehyde considering both irritation and cancer hazards

    Get PDF
    Formaldehyde is a well-studied chemical and effects from inhalation exposures have been extensively characterized in numerous controlled studies with human volunteers, including asthmatics and other sensitive individuals, which provide a rich database on exposure concentrations that can reliably produce the symptoms of sensory irritation. Although individuals can differ in their sensitivity to odor and eye irritation, the majority of authoritative reviews of the formaldehyde literature have concluded that an air concentration of 0.3 ppm will provide protection from eye irritation for virtually everyone. A weight of evidence-based formaldehyde exposure limit of 0.1 ppm (100 ppb) is recommended as an indoor air level for all individuals for odor detection and sensory irritation. It has recently been suggested by the International Agency for Research on Cancer (IARC), the National Toxicology Program (NTP), and the US Environmental Protection Agency (US EPA) that formaldehyde is causally associated with nasopharyngeal cancer (NPC) and leukemia. This has led US EPA to conclude that irritation is not the most sensitive toxic endpoint and that carcinogenicity should dictate how to establish exposure limits for formaldehyde. In this review, a number of lines of reasoning and substantial scientific evidence are described and discussed, which leads to a conclusion that neither point of contact nor systemic effects of any type, including NPC or leukemia, are causally associated with exposure to formaldehyde. This conclusion supports the view that the equivocal epidemiology studies that suggest otherwise are almost certainly flawed by identified or yet to be unidentified confounding variables. Thus, this assessment concludes that a formaldehyde indoor air limit of 0.1 ppm should protect even particularly susceptible individuals from both irritation effects and any potential cancer hazard

    Systematic review with meta-analysis of the epidemiological evidence relating smoking to COPD, chronic bronchitis and emphysema

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Smoking is a known cause of the outcomes COPD, chronic bronchitis (CB) and emphysema, but no previous systematic review exists. We summarize evidence for various smoking indices.</p> <p>Methods</p> <p>Based on MEDLINE searches and other sources we obtained papers published to 2006 describing epidemiological studies relating incidence or prevalence of these outcomes to smoking. Studies in children or adolescents, or in populations at high respiratory disease risk or with co-existing diseases were excluded. Study-specific data were extracted on design, exposures and outcomes considered, and confounder adjustment. For each outcome RRs/ORs and 95% CIs were extracted for ever, current and ex smoking and various dose response indices, and meta-analyses and meta-regressions conducted to determine how relationships were modified by various study and RR characteristics.</p> <p>Results</p> <p>Of 218 studies identified, 133 provide data for COPD, 101 for CB and 28 for emphysema. RR estimates are markedly heterogeneous. Based on random-effects meta-analyses of most-adjusted RR/ORs, estimates are elevated for ever smoking (COPD 2.89, CI 2.63-3.17, n = 129 RRs; CB 2.69, 2.50-2.90, n = 114; emphysema 4.51, 3.38-6.02, n = 28), current smoking (COPD 3.51, 3.08-3.99; CB 3.41, 3.13-3.72; emphysema 4.87, 2.83-8.41) and ex smoking (COPD 2.35, 2.11-2.63; CB 1.63, 1.50-1.78; emphysema 3.52, 2.51-4.94). For COPD, RRs are higher for males, for studies conducted in North America, for cigarette smoking rather than any product smoking, and where the unexposed base is never smoking any product, and are markedly lower when asthma is included in the COPD definition. Variations by sex, continent, smoking product and unexposed group are in the same direction for CB, but less clearly demonstrated. For all outcomes RRs are higher when based on mortality, and for COPD are markedly lower when based on lung function. For all outcomes, risk increases with amount smoked and pack-years. Limited data show risk decreases with increasing starting age for COPD and CB and with increasing quitting duration for COPD. No clear relationship is seen with duration of smoking.</p> <p>Conclusions</p> <p>The results confirm and quantify the causal relationships with smoking.</p

    Combined EsophaCap cytology and MUC2 immunohistochemistry for screening of intestinal metaplasia, dysplasia and carcinoma

    No full text
    Zhongren Zhou,1 Irina Kalatskaya,2 Donna Russell,1 Norman Marcon,3 Maria Cirocco,3 Paul M Krzyzanowski,2 Cathy Streutker,3 Hua Liang,4 Virginia R Litle,5 Tony E Godfrey,5 Lincoln Stein21Department of Pathology &amp; Immunology, Washington University, Saint Louis, MO, USA; 2Department of Adaptive Oncology, Ontario Institute for Cancer Research, Toronto, Ontario, Canada; 3Division of Gastroenterology, Department of Internal Medicine, St. Michael&rsquo;s Hospital, Toronto, Ontario, Canada; 4Department of Statistics, George Washington University, Washington, DC, USA; 5Department of Surgery, Boston University School of Medicine, Boston, MA, USAPurpose: The incidence of esophageal adenocarcinoma (EAC) has increased by 700% in Western countries over the last 30 years. Although clinical guidelines call for endoscopic surveillance for EAC among high-risk populations, fewer than 5% of new EAC patients are under surveillance at the time of diagnosis. We studied the accuracy of combined cytopathology and MUC2 immunohistochemistry (IHC) for screening of Intestinal Metaplasia (IM), dysplasia and EAC, using specimens collected from the EsophaCap swallowable encapsulated cytology sponge from Canada and United States.Patients and methods: By comparing the EsophaCap cytological diagnosis with concurrent endoscopic biopsies performed on the same patients in 28 cases, we first built up the cytology diagnostic categories and criteria. Based on these criteria, 136 cases were evaluated by both cytology and MUC2 IHC with blinded to patient biopsy diagnosis.Results: We first set up categories and criteria for cytological diagnosis of EscophaCap samples. Based on these, we divided our evaluated cytological samples into two groups: non-IM group and IM or dysplasia or adenocarcinoma group. Using the biopsy as our gold standard to screen IM, dysplasia and EAC by combined cytology and MUC2 IHC, the sensitivity and specificity were 68% and 91%, respectively, which is in the range of clinically useful cytological screening tests such as the cervical Pap smear.Conclusions: Combined EsophaCap cytology and MUC2 IHC could be a good screening test for IM and Beyond.Keywords: Barrett&rsquo;s esophagus, esophageal adenocarcinoma, cytology screening, MUC2 IHC, EsophaCap, intestinal metaplasi
    • …
    corecore