7 research outputs found

    Molecular dynamics simulations of the growth of poly(chloro-para-xylylene) films

    Get PDF
    Parylene C, poly(chloro-para-xylylene) is the most widely used member of the parylene family due to its excellent chemical and physical properties. In this work we analyzed the formation of the parylene C film using molecular mechanics and molecular dynamics methods. A five unit chain is necessary to create a stable hydrophobic cluster and to adhere to a covered surface. Two scenarios were deemed to take place. The obtained results are consistent with a polymer film scaling growth mechanism and contribute to the description of the dynamic growth of the parylene C polymer

    ATP and its N6-substituted analogues: parameterization, molecular dynamics simulation and conformational analysis

    Get PDF
    In this work we used a combination of classical molecular dynamics and simulated annealing techniques to shed more light on the conformational flexibility of 12 adenosine triphosphate (ATP) analogues in a water environment. We present simulations in AMBER force field for ATP and 12 published analogues [Shah et al. (1997) Proc Natl Acad Sci USA 94: 3565–3570]. The calculations were carried out using the generalized Born (GB) solvation model in the presence of the cation Mg2+. The ion was placed at a close distance (2 Å) from the charged oxygen atoms of the beta and gamma phosphate groups of the −3 negatively charged ATP analogue molecules. Analysis of the results revealed the distribution of inter-proton distances H8–H1′ and H8–H2′ versus the torsion angle ψ (C4–N9-C1′–O4′) for all conformations of ATP analogues. There are two gaps in the distribution of torsion angle ψ values: the first is between −30 and 30 degrees and is described by cis-conformation; and the second is between 90 and 175 degrees, which mostly covers a region of anti conformation. Our results compare favorably with results obtained in experimental assays [Jiang and Mao (2002) Polyhedron 21:435–438]

    Modeling and Fault Tolerance Analysis of ZigBee Protocol in IoT Networks

    No full text
    This paper presents the essence of IoT (Internet of Things) works and design challenges, discusses its principles of operation, and presents IoT development concepts. WSN (Wireless Sensor Network) was characterized in detail as an essential component of IoT infrastructure. The various faults that can occur at all levels of the IoT architecture, such as sensor nodes, actuators, network links, as well as processing and storage components clearly demonstrate that fault-tolerance (FT) has become a key issue for IoT systems. A properly applied routing algorithm has a direct impact on the power consumption of sensors, which in extreme cases is the reason why nodes shut down due to battery degradation. To study the fault tolerance of IoT infrastructure, a ZigBee network topology was created, and various node failure scenarios were simulated. Furthermore, the results presented showed the impact and importance of choosing the right routing scheme, based on the correlation of throughput to the number of rejected packets, as well as the proportionality of the value of management traffic to the other including the ratio of rejected packets

    Modeling and Fault Tolerance Analysis of ZigBee Protocol in IoT Networks

    No full text
    This paper presents the essence of IoT (Internet of Things) works and design challenges, discusses its principles of operation, and presents IoT development concepts. WSN (Wireless Sensor Network) was characterized in detail as an essential component of IoT infrastructure. The various faults that can occur at all levels of the IoT architecture, such as sensor nodes, actuators, network links, as well as processing and storage components clearly demonstrate that fault-tolerance (FT) has become a key issue for IoT systems. A properly applied routing algorithm has a direct impact on the power consumption of sensors, which in extreme cases is the reason why nodes shut down due to battery degradation. To study the fault tolerance of IoT infrastructure, a ZigBee network topology was created, and various node failure scenarios were simulated. Furthermore, the results presented showed the impact and importance of choosing the right routing scheme, based on the correlation of throughput to the number of rejected packets, as well as the proportionality of the value of management traffic to the other including the ratio of rejected packets
    corecore