42 research outputs found

    Mechanical thrombectomy in acute stroke – Five years of experience in Poland

    Get PDF
    Objectives Mechanical thrombectomy (MT) is not reimbursed by the Polish public health system. We present a description of 5 years of experience with MT in acute stroke in Comprehensive Stroke Centers (CSCs) in Poland. Methods and results We retrospectively analyzed the results of a structured questionnaire from 23 out of 25 identified CSCs and 22 data sets that include 61 clinical, radiological and outcome measures. Results Most of the CSCs (74%) were founded at University Hospitals and most (65.2%) work round the clock. In 78.3% of them, the working teams are composed of neurologists and neuro-radiologists. All CSCs perform CT and angio-CT before MT. In total 586 patients were subjected to MT and data from 531 of them were analyzed. Mean time laps from stroke onset to groin puncture was 250±99min. 90.3% of the studied patients had MT within 6h from stroke onset; 59.3% of them were treated with IV rt-PA prior to MT; 15.1% had IA rt-PA during MT and 4.7% – emergent stenting of a large vessel. M1 of MCA was occluded in 47.8% of cases. The Solitaire device was used in 53% of cases. Successful recanalization (TICI2b–TICI3) was achieved in 64.6% of cases and 53.4% of patients did not experience hemorrhagic transformation. Clinical improvement on discharge was noticed in 53.7% of cases, futile recanalization – in 30.7%, mRS of 0–2 – in 31.4% and mRS of 6 in 22% of cases. Conclusion Our results can help harmonize standards for MT in Poland according to international guidelines

    Production efficiency of Poland farm-scale biogas plants: A case study

    No full text
    This paper provides the analysis of results of biogas and methane yield for: maize silage (MS), pig slurry (PS), waste potatoes (WP) and sugar beet pulp (SB). The results show that maize silage is the most energy substrate (among the samples tested), providing a cumulative methane yield from 595 to 631 m-3 Mg VS (VS – volatile solids). The study was carried out in a laboratory scale using anaerobic batch reactors, at controlled (mesophilic) temperature and pH conditions. This paper is Part I of a report of an experiment carried out, in the laboratory scale and in the commercial scale (in parallel) The purpose of the experiment was to verify differences in biomethane yields of the same materials in the two scales. Moreover, this paper is an introduction to a presentation of the method to determine the biochemical methane potential correction coefficient (BMPCC), the details of which will be explained in Part II

    Kraft Lignin Grafted with Polyvinylpyrrolidone as a Novel Microbial Carrier in Biogas Production

    No full text
    The objective of this study was to verify the effect of kraft lignin as a microbial carrier on biogas/methane yield. An anaerobic co-digestion test process was carried out, in which confectionery waste was used with sewage sludge. At the first stage of the study pure lignin and lignin combined with polyvinylpyrrolidone (PVP) were subjected to an extensive physicochemical analysis. Their morphology, dispersion and adsorption properties were determined. The two materials were also subjected to thermal, spectroscopic and elementary analysis. The anaerobic digestion of the two substrates was carried out with and without the addition of the carrier, under mesophilic conditions and in periodic operation. The monitoring and analysis of the two essential parameters, i.e., pH and volatile fatty acids/total alkalinity (VFA/TA) ratio, revealed that the process was stable in both tests. Microbial and biochemical analyses showed intensified proliferation of eubacteria and increased dehydrogenase activity in samples prepared with the lignin + PVP material. The cell count increased by 46% in the stuffed wafers (WAF) + sewage sludge (SS) variant with the carrier, whereas the enzyme activity increased by 43%. Cell immobilisation noticeably improved the process efficiency. The biogas production increased from 722 m3 Mg−1 VS to 850 m3 Mg−1 VS (VS ⁻ volatile solids), whereas the methane production increased from 428 m3 Mg−1 VS to 503 m3 Mg−1 VS (by about 18%). The research proved that lignin could be used as a very effective microbial carrier in anaerobic digestion (AD)

    The Influence of the Process of Sugar Beet Storage on Its Biochemical Methane Potential

    No full text
    The manner of storage of sugar beets largely influences their physical and chemical properties, which may subsequently determine their biochemical methane potential. In this study, samples of fresh sugar beets as well as beets stored in two ways—in airtight conditions and in an open-air container—were tested. In both cases, measurements were taken on specific dates, i.e., after 4, 8, 16 and 32 weeks of storage. A decrease in pH was observed in all samples, with the lowest decrease occurring in hermetically stored samples. The lowest pH value of 3.71 was obtained for sugar beets stored in an open-air container after 32 weeks of storage. During storage, a gradual decrease in total solids was also recorded along with accompanying losses of organic matter, more significant in the case of storage in an open-air container. In subsequent storage periods, the biogas/methane production efficiency differed slightly for both methods. The highest volume of biogas was obtained for fresh sugar beets—148.23 mL·g−1 fresh matter (FM)—and subsequently in the 8th and 16th weeks of storage: 139.35 mL·g−1 FM (H—airtight conditions) and 144.14 mL·g−1 FM (O—open-air container), and 147.58 H mL·g−1 FM (H) and 148.22 mL·g−1 FM (O), respectively. The storage period affected the time of anaerobic decomposition of the organic matter—fresh sugar beets took the longest to ferment (26 days), while the material stored for 32 weeks took the shortest to ferment. In the experiment, the content of selected organic compounds in individual samples, i.e., sugar, methanol, ethanol, lactic acid and acetic acid, was also analysed. Within these results, significant differences were found between the samples stored using the two different methods. A high content of sugar, methanol, ethanol and other chemical compounds in the “O” materials showed the hydrolysis and acidogenesis processes taking place in an open-air container, with the participation of catalytic microorganisms

    The usefulness of sugar beets for biogas production in relations of the storage time and sugar content

    No full text
    The aim of the study was to evaluate the usefulness of sugar beet for biogas production, taking into account the duration time of storage and sugar content in the roots. The research has included analysis of methane and biogas yield of sugar beet. The relations between the sugar content in the roots and the length of storage period and the course of the methane fermentation process were determined. Sugar beets with sugar content of 17.6% and 19.6% were used for this experiment. In order to analyse the fermentation process, the fresh beets and the beets stored in flexible, hermetic tanks in the period of 43 and 89 days were used. Based on the analysis of the obtained results, it was found that the sugar content and the storage time of sugar beet roots can differentiate the production of biomethane and that it influences the methane fermentation process and the quality of the produced biogas

    Modelling the Interaction between Air Pollutant Emissions and Their Key Sources in Poland

    No full text
    The main purpose of this study is to investigate the relationships between key sources of air pollutant emissions (sources of energy production, factories which are particularly harmful to the environment, the fleets of cars, environmental protection expenditure) and the main environmental air pollution (SO2, NOx, CO and PM) in Poland. Models based on MLP neural networks were used as predictive models. Global sensitivity analysis was used to demonstrate the significant impact of individual network input variables on the output variable. To verify the effectiveness of the models created, the actual data were compared with the data obtained through modelling. Projected courses of changes in the variables under study correspond with the real data, which confirms that the proposed models generalize acquired knowledge well. The high MLP network quality parameters of 0.99–0.85 indicate that the network generalizes the acquired knowledge accurately. The sensitivity analysis for NOx, CO and PM pollutants indicates the significance of all input variables. For SO2, it showed significance for four of the six variables analysed. The predictions made by the neural models are not very different from the experimental values

    Energy Efficiency of Comminution and Extrusion of Maize Substrates Subjected to Methane Fermentation

    No full text
    The production of methane in the anaerobic digestion process is a proven technology, but it is characterized by low cost-effectiveness. The pretreatment of substrates seems to be a promising technology, which may increase the cost-effectiveness of biogas installations. The aim of the study was to investigate the influence of the comminution and extrusion of maize silage and maize straw silage on the course and yield of anaerobic digestion. The use of a pretreatment (comminution, extrusion) is justified when its energy balance is positive. The greatest increase in the methane yield per dry matter (12.4%) was observed after the extrusion of maize straw silage at 175 °C. The change in the methane yield resulting from the extrusion of maize silage and maize straw silage at 150 °C was small and amounted to 6.4% and 9%, respectively. The comminution caused an increase in the methane yield and accelerated the fermentation of substrates. The methane yield from maize silage was 38.4%, whereas the yield from maize straw silage was only 8.3%
    corecore