6 research outputs found

    Impact of seismic-type shock parameters on the soil-structure interaction effect in the USC mining region

    Get PDF
    The paper deals with seismic-type surface and building vibrations randomly occurring as a result of rockbursts in mining regions (random events as with earthquakes). The focus is on the problem of ground vibrations transmission to building foundation – it is one of very important phenomenon associated with soil-structure interaction effect. One of the ways of estimation of possible differences between simultaneously developing free-field vibrations next to a building and building foundation vibrations, i.e. using a ratio of response spectra (RRS), is applied to this study. Analysis concerns the ratio of dimensionless and dimensional acceleration response spectra (β and Sa) – denoted as RRS(β) and RRS(Sa), respectively. Horizontal vibrations parallel to the transverse (x) and longitudinal (y) axis of the representative (typical) two-storey, masonry office building are discussed. Calculations are based on the results of in situ surface vibration measurements performed in the seismically active Upper Silesian Coalfield (USC) mining area in Poland (long-term, full-scale monitoring). Evaluation of the dependence of the curves of ratio of response spectra on some parameters corresponding to mine-induced vibrations (i.e. epicentral distance, mining shock energy, peak value of free-field vibrations) is executed. From the obtained results, it can be definitely concluded that the influence of the most important mining tremor parameters (i.e. epicentral distance, mining shock energy, peak value of free-field vibrations) on the ratio of response spectra calculated in the successive ranges of these parameters, is clearly observed

    Approximate classification of mining tremors harmfulness based on free-field and building foundation vibrations

    No full text
    The paper compares the results of an approximate evaluation of mining tremors harmfulness performed on the basis of free-field and simultaneously measured building foundation vibrations. The focus is on the office building located in the Upper Silesian Basin (USB). The empirical Mining Intensity Scale GSI-GZWKW-2012 has been applied to classify the harmfulness of the rockbursts. This scale is based on the measurements of free-field vibrations but, for research purposes, it was also used in the cases of building foundation vibrations. The analysis was carried out using the set of 156 pairs ground – foundation of velocity vibration records as well as the set of 156 pairs of acceleration records induced by the same mining tremors

    Dynamic investigations of various civil engineering structures due to ambient and mining tremors

    No full text
    The first part of the study deals with evaluation of dynamic characteristics of selected typical industrial facilities, such as the extraction steel tower, reinforced concrete tower skips. These structures are located in the coal mine area. The constructions of the test items are varied and complicated, which causes difficulties in the research in situ. In the investigation we used normal and emergency operation of lifting equipment, the effect of wind gusts and rhythmic man swaying. The second part of the study involves the determination of the dynamic characteristics of tailing dam. In this case mining tremors were used as the sources of vibration excitations. By using natural vibration excitation source it was possible to determine the lowest frequency of free vibration of the tailing dam. The third part of the paper focuses on the results of measurements of mine-induced ground vibrations and vibrations of residential buildings of various types. Typical one-family masonry houses as well as 5 and 12 storey reinforced prefabricated buildings were examined. The studies were conducted to determine the transmission of free-field vibrations to the building foundations. According to the significant differences between the simultaneously measured ground and building foundation vibrations, results of experimental tests obtained by means of response spectra are essential for the proper adoption of kinematic loads for dynamic models of these structures. The results of experimental studies were the basis for the verification of dynamic models of investigated structures
    corecore