8 research outputs found

    Precise Determination of Liquid Layer Thickness with Downward Annular Two-Phase Gas-Very Viscous Liquid Flow

    No full text
    The paper presents the characteristics of the original optoelectronic system for measuring the values of hydrodynamics of two-phase downward gas-very viscous liquid flow. The measurement methods and results of the research on selected values describing gas–oil two-phase flow are presented. The study was conducted in vertical pipes with diameters of 12.5, 16, 22, and 54 mm. The research was conducted with the superficial velocities of air jg = 0–29.9 m/s and oil jl = 0–0.254 m/s, which corresponded to the values of gas stream density gg = (0–37.31) kg/(m2s) and of liquid gl = (0.61–226.87) kg/(m2s), in order to determine the influence of air and oil streams on the character of liquid films. The variations in oil viscosity were applied in the range ηl = (0.055–1.517) Pas. The study results that were obtained with optical probes along with computer image analysis system revealed vast research opportunities in terms of the identification of gas–liquid two-phase downward flow structures that were generated as well as the determination of the thickness of liquid film with various level of interfacial surface area undulation. The designed and constructed proprietary measuring system is also useful for testing the liquid layer by determining the parameters of the resulting waves. It is considered that the apparatus system that is presented in the article is the most effective in examining the properties of liquid layers of oil and other liquids with low electrical conductivity and a significant degree of monochromatic light absorption. In view of noninvasive technique of measuring characteristic values of liquid films being formed, the above measuring system is believed to be very useful for industry in the diagnostics of the apparatus employing such flows

    Forming of film surface of very viscous liquid flowing with gas in pipes

    No full text
    The study presents the possible use of optoelectronic system for the measurement of the values, which are specific for hydrodynamics of two-phase gas liquid flow in vertical pipes, where a very-high-viscosity liquid forms a falling film in a pipe. The experimental method was provided, and the findings were presented and analysed for selected values, which characterize the two-phase flow. Attempt was also made to evaluate the effects of flow parameters and properties of the liquid on the gas-liquid interface value, which is decisive for the conditions of heat exchange and mass transfer in falling film equipment. The nature and form of created waves at various velocities were also described

    Effect of Rheological Properties of Aqueous Solution of Na-CMC on Spray Angle for Conical Pressure-Swirl Atomizers

    No full text
    Aerosol is a multiphase system, created as a result of the dispersion of a liquid in a gaseous medium. The atomized liquids are most often water and fuel; however, they can be any other substance. Even a small addition of a substance that changes the rheological properties (i.e., the nature of the flow) can change the properties of the resulting aerosol. The most important parameters that characterize the aerosol are the outflow rate, the droplet diameter, the spray spectrum, and the spray angle. The latter is important when selecting atomizers, especially those working in groups on the sprayer boom. The spray angle is an important parameter of the atomization process, providing a great deal of information about the quality of the spray. This study presents the results of rheological tests and the atomization of aqueous solutions with varying concentrations of sodium carboxymethylcellulose (Na-CMC). We found that the spray angle decreased with increasing Na-CMC concentration in the solution, which is attributable to an increase in shear viscosity. The design of the atomizer is also important. The largest spray angles were obtained for an atomizer with a diameter of 0.02 m and with the inlet port being placed at an angle to the atomizer axis. Based on the experimental results for various liquids and atomizer designs, a correlation equation describing the spray angle is proposed

    Downward Annular Flow of Air–Oil–Water Mixture in a Vertical Pipe

    No full text
    The paper presents the results of a study concerned with the hydrodynamics of an annular downward multiphase flow of gas and two mutually non-mixing liquids through a vertical pipe with a diameter of 12.5 mm. The air, oil and water were used as working media in this study with changes in superficial velocities in the ranges of jg = 0.34–52.5 m/s for air, jo = 0.000165–0.75 m/s for oil, and jw = 0.02–2.5 m/s for water, respectively. The oil density and viscosity were varied within the ranges of ρo = 859–881 kg/m3 and ηo = 29–2190 mPas, respectively. The research involved the identification of multiphase flow patterns and determination of the void fraction of the individual phases. New flow patterns have been identified and described for the gravitational flow conditions of a two-phase water–oil liquid and a three-phase air–water–oil flow. New flow regime maps and equations for the calculation of air, oil and water void fractions have been developed. A good conformity between the calculated and measured values of void fraction were obtained. The map for the oil–water–air three-phase flow is valid for the following conditions: j3P = 0.35–53.4 m/s (velocity of three-phase mixture) and oil in liquid concentration βo* = 0.48–94% (oil in liquid concentration). In the case of a downward annular oil–water two-phase flow, this map is valid for liquid mixture velocity jl = 0.052–2.14 m/s and βo* = 0.48–94%

    State-of-the-Art Review of Effervescent-Swirl Atomizers

    No full text
    This paper presents issues in the field of theory, construction, calculations, as well as the design of effervescent-swirl atomizers. The results of experimental studies of spraying liquids with different physico-chemical properties for this type of atomizers are discussed. Effervescent-swirl atomization is a complex process and its mechanism is not fully understood. Therefore, the purpose of the manuscript is the complexity of the atomization process and its mechanism as well as the influence of individual parameters on its efficiency were thoroughly analyzed. The analyzed parameters include: atomizer design, outlet shape, gas and liquid flow rate, injection pressure, physicochemical properties of the atomized liquid, pressure drop, outflow coefficient, spray angle, quantitative droplet distributions, and average droplet diameter. Moreover, in the work, on the basis of the literature review, the results of the research related to, inter alia, the phenomenon of air core formation and the influence of a number of parameters on the efficiency of the atomization process are analyzed. The literature review included in the work makes it possible to better understand the atomization process carried out in effervescent-swirl atomizers, and also provides better design criteria and analysis of the efficiency of the tested devices. The article presents correlation equations covering the basic features of the atomization process, which relate a large number of parameters influencing the efficiency of this process and the character of the sprayed liquid, which may be useful in design practice

    The analysis of pressure drop, spray angle, and sprinkling intensity distribution in the spray stream produced by the water-foam nozzle

    No full text
    This paper summarises a series of large-scale fire suppression tests conducted to simulate a fire in the big surface and/or surface sprinkling. The subject of this paper is the research on water spraying with the use of the Turbo Jet 2011 water-foam nozzle manufactured by Supon Białystok. The results discuss the pressure losses caused by the flow through the discharge hose, spray angle, and the intensity of surface sprinkling. The greatest stream ranges and the highest maximum values of the sprinkling intensity were obtained at the capacity of 400 l/min, and a solid spray angle. The smallest values were obtained at 200 l/min, a pressure of 5 bar, and a solid spray angle. The actual pressures taking into account the losses in the hose section were calculated. As for the highest firefighting effectiveness of the stream, the authors recommended the following parameters: semi spray angle, 200 l/min, and 2.5 bar

    Effect of Operating Parameters and Energy Expenditure on the Biological Performance of Rotating Biological Contactor for Wastewater Treatment

    No full text
    The rotating biological contactor (RBC) is resistant to toxic chemical and shock loadings, and this results in significant organic and nutrient removal efficiencies. The RBC system offers a low-energy footprint and saves up to 90% in energy costs. Due to the system’s low-energy demand, it is easily operable with renewable energy sources, either solar or wind power. An RBC was employed to degrade pollutants in domestic wastewater through biodegradation mechanisms in this study. The high microbial population in the RBC bioreactor produced excellent biological treatment capacity and higher effluent quality. The results showed that the RBC bioreactor achieved an average removal efficiency of 73.9% of chemical oxygen demand (COD), 38.3% of total nitrogen (TN), 95.6% of ammonium, and 78.9% of turbidity. Investigation of operational parameters, disk rotational speed, HRT, and SRT, showed the biological performance impact. Disk rotational speed showed uniform effluent quality at 30–40 rpm, while higher values of disk rotational speed (>40 rpm) resulted in lower effluent quality in COD, TN, and turbidity. The longer hydraulic retention time and sludge retention time (SRT) facilitated higher biological performance efficiency. The longer SRTs enabled the higher TN removal efficiency because of the higher quantity of microbial biomass retention. The longer SRT also resulted in efficient sludge-settling properties and reduced volume of sludge production. The energy evaluation of the RBC bioreactor showed that it consumed only 0.14 kWh/m3, which is significantly lower than the conventional treatment methods; therefore, it is easily operable with renewable energy sources. The RBC is promising substitute for traditional suspended growth processes as higher microbial activity, lower operational and maintenance costs, and lower carbon foot print enhanced the biological performance, which aligns with the stipulations of ecological evolution and environment-friendly treatment

    Ensuring the Reliability of Gas Supply Systems by Optimizing the Overhaul Planning

    No full text
    The aim of the article is the development of methods for optimal overhaul planning of compressor station equipment. Nowadays, due to uncertainties in the forecast of gas supply flow rates, increasing the reliability and energy efficiency of main gas pipelines is an urgent problem. The dependence of operating costs for major repairs on the maintenance periodicity is extreme. Reducing equipment’s maintenance period leads to an increase in repair costs. It also increases the reliability of equipment operation. Overall, all these facts reduce the probability of emergency failures and related expenses for emergency recovery, gas losses, and undersupply to consumers. Therefore, an optimal maintenance frequency exists, at which the total operating costs will be minimal. A procedure for optimizing the periodicity of repairs and equipment replacement is proposed. It was realized by constructing an objective function as a dependence of exploitation costs on the inter-repair period of major repairs. A probabilistic approach was applied to assess the aging process. The characteristics of the equipment’s state are described by distribution densities (i.e., pre-repair, inter-repair, and full-service life), which vary depending on product initialization time. The main characteristics of major repairs are their duration and intensity, which are evaluated by the quality factor related to repair costs. The extremum of the objective function is sought by the method of competing options. It was determined that the optimal management of the frequency of equipment replacement can be realized by choosing the optimal values of the average service life, average operation time of units until the first planned and preventive repair, and quality factor. As a result, the required technical condition for the technological equipment is ensured under minimum operating costs without reducing the system’s reliability
    corecore