13 research outputs found
Selective Deuterium Ion Acceleration Using the Vulcan PW Laser
We report on the successful demonstration of selective acceleration of
deuterium ions by target-normal sheath acceleration (TNSA) with a high-energy
petawatt laser. TNSA typically produces a multi-species ion beam that
originates from the intrinsic hydrocarbon and water vapor contaminants on the
target surface. Using the method first developed by Morrison, et al., an
ion beam with 99 deuterium ions and peak energy 14 MeV/nucleon is
produced with a 200 J, 700 fs, laser pulse by cryogenically
freezing heavy water (DO) vapor onto the rear surface of the target prior
to the shot. Within the range of our detectors (0-8.5), we find
laser-to-deuterium-ion energy conversion efficiency of 4.3 above 0.7
MeV/nucleon while a conservative estimate of the total beam gives a conversion
efficiency of 9.4.Comment: 5 pages, 5 figure
Stabilized radiation pressure acceleration and neutron generation in ultrathin deuterated foils
Premature relativistic transparency of ultrathin, laser-irradiated targets is recognized as an obstacle to achieving a stable radiation pressure acceleration in the "light sail" (LS) mode. Experimental data, corroborated by 2D PIC simulations, show that a few-nm thick overcoat surface layer of high Z material significantly improves ion bunching at high energies during the acceleration. This is diagnosed by simultaneous ion and neutron spectroscopy following irradiation of deuterated plastic targets. In particular, copious and directional neutron production (significantly larger than for other in-target schemes) arises, under optimal parameters, as a signature of plasma layer integrity during the acceleration
Absolute calibration of Fujifilm BAS-TR image plate response to laser driven protons up to 40 MeV
Image plates (IPs) are a popular detector in the field of laser driven ion acceleration, owing to their high dynamic range and reusability. An absolute calibration of these detectors to laser-driven protons in the routinely produced tens of MeV energy range is, therefore, essential. In this paper, the response of Fujifilm BAS-TR IPs to 1-40Â MeV protons is calibrated by employing the detectors in high resolution Thomson parabola spectrometers in conjunction with a CR-39 nuclear track detector to determine absolute proton numbers. While CR-39 was placed in front of the image plate for lower energy protons, it was placed behind the image plate for energies above 10Â MeV using suitable metal filters sandwiched between the image plate and CR-39 to select specific energies. The measured response agrees well with previously reported calibrations as well as standard models of IP response, providing, for the first time, an absolute calibration over a large range of proton energies of relevance to current experiments