133 research outputs found

    Validation of Repeated Endothelial Function Measurements Using EndoPAT in Stroke

    Get PDF
    BackgroundDecreased endothelial function (EF) may be a prognostic marker for stroke. Measuring pharmacological effects on EF may be of interest in the development of personalized medicine for stroke prevention. In this study, we assessed the reliability of repeated EF measurements using a pulse amplitude tonometry technology in acute stroke patients. Similarly, reliability was tested in healthy subjects devoid of vascular disease to estimate reactivity and reliability in a younger non-stroke population.Materials and methodsEF was assessed using the EndoPAT2000 in 20 healthy volunteers (men 50%, mean age 35.85 ± 3.47 years) and 21 stroke patients (men 52%, mean age 66.38 ± 2.85 years, and mean NIHSS 4.09 ± 0.53) under standardized conditions. EF was measured as the reactive hyperemia index (RHI), logarithm of RHI (lnRHI), and Framingham RHI (fRHI). Measurements were separated by 1.5 and 24 h to assess same-day and day-to-day reliability, respectively.ResultsFair to moderate correlations of measurements [intraclass correlation coefficient (ICC)same-day 0.29 and ICCday-to-day 0.52] were detected in healthy subjects. In stroke patients, we found moderate to substantial correlation of both same-day and day-to-day repeated measurements (ICCsame-day 0.40 and ICCday-to-day 0.62). fRHI compared with RHI and lnRHI showed best reliability.ConclusionRepeated measurements of fRHI in stroke patients show moderate reliability on same-day and substantial on day-to-day measurements. Likewise, in healthy subjects there was substantial reliability on day-to-day measurement, but only moderate on same-day measurements. In general, day-to-day correlation of repeated EF measurements was far better than that of same-day measurements, which ranged from poor to moderate depending on the specific outcome measure of EF. A possible carryover effect should be considered if same-day repeated testing of drug effects is applied in future studies

    Deep Learning-Based Assessment of Cerebral Microbleeds in COVID-19

    Full text link
    Cerebral Microbleeds (CMBs), typically captured as hypointensities from susceptibility-weighted imaging (SWI), are particularly important for the study of dementia, cerebrovascular disease, and normal aging. Recent studies on COVID-19 have shown an increase in CMBs of coronavirus cases. Automatic detection of CMBs is challenging due to the small size and amount of CMBs making the classes highly imbalanced, lack of publicly available annotated data, and similarity with CMB mimics such as calcifications, irons, and veins. Hence, the existing deep learning methods are mostly trained on very limited research data and fail to generalize to unseen data with high variability and cannot be used in clinical setups. To this end, we propose an efficient 3D deep learning framework that is actively trained on multi-domain data. Two public datasets assigned for normal aging, stroke, and Alzheimer's disease analysis as well as an in-house dataset for COVID-19 assessment are used to train and evaluate the models. The obtained results show that the proposed method is robust to low-resolution images and achieves 78% recall and 80% precision on the entire test set with an average false positive of 1.6 per scan.Comment: International Symposium on Biomedical Imaging (ISBI) 202

    COVID-19 did not result in increased hospitalization for stroke and transient ischemic attack:A nationwide study

    Get PDF
    BACKGROUND: The risk of thrombosis increases in infectious diseases, yet observational studies from single centers have shown a decrease in admission of acute ischemic stroke patients during the COVID‐19 pandemic. To investigate unselected stroke admission rates we performed a nationwide study in Denmark. METHODS: We extracted information from Danish national health registries. The following mutually exclusive time periods were compared to the year before the lockdown: (1) first national lockdown, (2) gradual reopening, (3) few restrictions, (4) regional lockdown, and (5) second national lockdown. RESULTS: Generally, admission rates were unchanged during the pandemic. In the unadjusted data, we observed a small decrease in the admission rate for all strokes under the first lockdown (incidence rate ratio: 0.93, confidence interval [CI]: 0.87–0.99) and a slight increase during the periods with gradual reopening, few restrictions, and the regional lockdown driven by ischemic strokes. We found no change in the rate of severe strokes, mild strokes, or 30‐day mortality. An exception was the higher mortality for all strokes during the first lockdown (risk ratio: crude 1.30 [CI: 1.03–1.59]; adjusted 1.17 [CI: 0.93–1.47]). The quality of care remained unchanged. CONCLUSION: Stroke admission rates remained largely unchanged during the pandemic, while an increased short‐term mortality rate in patients admitted with stroke observed during the first lockdown was seen, probably reflecting that the more frail patients constituted a higher proportion of admitted patients at the beginning of the pandemic
    • …
    corecore