3 research outputs found

    AllerCatPro 2.0: a web server for predicting protein allergenicity potential

    Get PDF
    Proteins in food and personal care products can pose a risk for an immediate immunoglobulin E (IgE)-mediated allergic response. Bioinformatic tools can assist to predict and investigate the allergenic potential of proteins. Here we present AllerCatPro 2.0, a web server that can be used to predict protein allergenicity potential with better accuracy than other computational methods and new features that help assessors making informed decisions. AllerCatPro 2.0 predicts the similarity between input proteins using both their amino acid sequences and predicted 3D structures towards the most comprehensive datasets of reliable proteins associated with allergenicity. These datasets currently include 4979 protein allergens, 162 low allergenic proteins, and 165 autoimmune allergens with manual expert curation from the databases of WHO/International Union of Immunological Societies (IUIS), Comprehensive Protein Allergen Resource (COMPARE), Food Allergy Research and Resource Program (FARRP), UniProtKB and Allergome. Various examples of profilins, autoimmune allergens, low allergenic proteins, very large proteins, and nucleotide input sequences showcase the utility of AllerCatPro 2.0 for predicting protein allergenicity potential. The AllerCatPro 2.0 web server is freely accessible at https://allercatpro.bii.a-star.edu.sg

    Application of AllerCatPro 2.0 for protein safety assessments of consumer products

    Get PDF
    Foreign proteins are potentially immunogenic, and a proportion of these are able to induce immune responses that result in allergic sensitization. Subsequent exposure of sensitized subjects to the inducing protein can provoke a variety of allergic reactions that may be severe, or even fatal. It has therefore been recognized for some time that it is important to determine a priori whether a given protein has the potential to induce allergic responses in exposed subjects. For example, the need to assess whether transgene products expressed in genetically engineered crop plants have allergenic properties. This is not necessarily a straightforward exercise (as discussed elsewhere in this edition), but the task becomes even more challenging when there is a need to conduct an overall allergenicity safety assessment of complex mixtures of proteins in botanicals or other natural sources that are to be used in consumer products. This paper describes a new paradigm for the allergenicity safety assessment of proteins that is based on the use of AllerCatPro 2.0, a new version of a previously described web application model developed for the characterization of the allergenic potential of proteins. Operational aspects of AllerCatPro 2.0 are described with emphasis on the application of new features that provide improvements in the predictions of allergenic properties such as the identification of proteins with high allergenic concern. Furthermore, the paper provides a description of strategies of how AllerCatPro 2.0 can best be deployed as a screening tool for identifying suitable proteins as ingredients in consumer products as well as a tool, in conjunction with label-free proteomic analysis, for identifying and semiquantifying protein allergens in complex materials. Lastly, the paper discusses the steps that are recommended for formal allergenicity safety assessment of novel consumer products which contain proteins, including consideration and integration of predicted consumer exposure metrics. The article therefore provides a holistic perspective of the processes through which effective protein safety assessments can be made of potential allergenic hazards and risks associated with exposure to proteins in consumer products, with a particular focus on the use of AllerCatPro 2.0 for this purpose
    corecore