167 research outputs found

    Deep defects in Cu2ZnSnS4 monograin solar cells

    Get PDF
    AbstractIn this report Cu2ZnSnS4 (CZTS) monograin layer (MGL) solar cells were studied using admittance spectroscopy (AS) (frequency range 20Hz-10MHz) and temperature dependence of quantum efficiency (QE) curves (T=10K-300K). These studies revealed two deep defect states at EA1= 120 meV and at EA2= 167 meV. The first state was present in different CZTS cells while the second state had somewhat different properties in different cells. The temperature dependence of QE curves showed a shift of the long wavelength edge with increasing temperature by about 110 meV towards higher energy. The possible origin of the observed deep defect states is discussed

    A photoluminescence study of CuInSe2 single crystals ion implanted with 5 keV hydrogen

    Get PDF
    CuInSe2 single crystals ion implanted with 5 keV hydrogen at doses from 3 × 1014 to 1016 cm-2 are studied by photoluminescence (PL). The PL spectra before and after implantation reveal two bands, a main dominant band centred at 0.96 eV and a lower intensity band centred at 0.93 eV. Detailed analysis of the shape of these bands, their temperature and excitation intensity dependencies allow the recombination mechanisms to be identified as band-to-tail (BT) and band-to-impurity (BI), respectively. The implantation causes gradual red shifts of the bands increasing linearly with the dose. The average depth of potential fluctuations is also estimated to increase with the dose and saturates for doses above 1015 cm-2. A model is proposed which associates the potential fluctuations with the antisite defects copper on indium site and indium on copper site. The saturation is explained by full randomization of copper and indium atoms on the cation sub-lattice

    Photoluminescence of spray pyrolysis deposited ZnO nanorods

    Get PDF
    Photoluminescence of highly structured ZnO layers comprising well-shaped hexagonal rods is presented. The ZnO rods (length 500-1,000 nm, diameter 100-300 nm) were grown in air onto a preheated soda-lime glass (SGL) or ITO/SGL substrate by low-cost chemical spray pyrolysis method using zinc chloride precursor solutions and growth temperatures in the range of 450-550°C. We report the effect of the variation in deposition parameters (substrate type, growth temperature, spray rate, solvent type) on the photoluminescence properties of the spray-deposited ZnO nanorods. A dominant near band edge (NBE) emission is observed at 300 K and at 10 K. High-resolution photoluminescence measurements at 10 K reveal fine structure of the NBE band with the dominant peaks related to the bound exciton transitions. It is found that all studied technological parameters affect the excitonic photoluminescence in ZnO nanorods

    Optical properties of high quality Cu2ZnSnSe4 thin films

    Get PDF
    Cu2ZnSnSe4 thin films, fabricated on bare or molybdenum coated glass substrates by magnetron sputtering and selenisation, were studied by a range of techniques. Photoluminescence spectra reveal an excitonic peak and two phonon replicas of a donor-acceptor pair (DAP) recombination. Its acceptor and donor ionisation energies are 27 and 7 meV, respectively. This demonstrates that high-quality Cu2ZnSnSe4 thin films can be fabricated. An experimental value for the longitudinal optical phonon energy of 28 meV was estimated. The band gap energy of 1.01 eV at room temperature was determined using optical absorption spectr

    Development of Bi2S3 thin film solar cells by close-spaced sublimation and analysis of absorber bulk defects via in-depth photoluminescence analysis

    Get PDF
    This study was funded by the Estonian Research Council projects PSG689 “Bismuth Chalcogenide Thin-Film Disruptive Green Solar Technology for Next Generation Photovoltaics”, PRG627 “Antimony chalcogenide thin films for next-generation semi-transparent solar cells applicable in electricity producing windows”, and PRG1023; the Estonian Centre of Excellence project TK141 (TAR16016EK, TAR16016) “Advanced materials and high-technology devices for energy recuperation systems”, and the European Union's H2020 programme under the ERA Chair project 5GSOLAR grant agreement No 952509.The emergence of new PV applications in society requires the design of new materials and devices based on green and earth-abundant elements, with a different set of properties and wider applicability. In this perspective, Bi2S3 semiconductor material have gained attention as a defect-tolerant, non-toxic, and highly stable material for earth-abundant thin film PV technologies. Related to Bi2S3 non-toxic nature, so far it has been very popular to synthesize the material by chemical solution routes, while little research efforts have been dedicated to absorber deposition by physical deposition techniques. In particular, there are no studies on absorber development via rapid, high-volume, and in-line close-spaced sublimation technique. Moreover, in-depth analysis of material defects employing low temperature-dependent photoluminescence (PL) remains largely unexplored. In this work, we systematically study the impact of close-spaced sublimation (CSS) conditions on Bi2S3 absorber growth on various substrates, employing a wide range of source (400–600 °C) and substrate (200–400 °C) temperatures. CSS source temperature of 550 °C and substrate temperature of 400–450 °C were identified as optimal temperatures (grown either on glass, TiO2, or CdS substrates), allowing the fabrication of uniform and dense Bi2S3 films with enhanced [221]-oriented grains. For the first time, a proof of concept solar cell with CSS Bi2S3 is demonstrated and an in-depth analysis on the interrelation between grain structure, interface recombination, and device performance is provided. Employing low-temperature dependence PL, new and complementary insights on possible defects and recombination mechanisms are presented.--//-- M. Koltsov, S.V. Gopi, T. Raadik, J. Krustok, R. Josepson, R. Gržibovskis, A. Vembris, N. Spalatu, Development of Bi2S3 thin film solar cells by close-spaced sublimation and analysis of absorber bulk defects via in-depth photoluminescence analysis, Solar Energy Materials and Solar Cells, Volume 254, 2023, 112292, ISSN 0927-0248, https://doi.org/10.1016/j.solmat.2023.112292.(https://www.sciencedirect.com/science/article/pii/S0927024823001137) Published under the CC BY-NC-ND licence.Estonian Research Council projects PSG689, PRG627 and PRG1023; Estonian Centre of Excellence project TK141 (TAR16016EK, TAR16016); the European Union's H2020 programme under the ERA Chair project 5GSOLAR grant agreement No 952509; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART2

    Optical spectroscopy studies of Cu2ZnSnSe4 thin films

    Get PDF
    Cu2ZnSnSe4 thin films were synthesised by selenisation of magnetron sputtered metal precursors. The band gap determined from the absorption spectra increases from 1.01 eV at 300 K to 1.05 eV at 4.2 K. In lower quality films photoluminescence spectra show a broad, low intensity asymmetric band associated with a recombination of free electrons and holes localised on acceptors in the presence of spatial potential fluctuations. In high quality material the luminescence band becomes intense and narrow resolving two phonon replicas. Its shifts at changing excitation power suggest donor–acceptor pair recombination mechanisms. The proposed model involving two pairs of donors and acceptors is supported by the evolution of the band intensity and spectral position with temperature. Energy levels of the donors and acceptors are estimated using Arrhenius quenching analysis

    Temperature dependent photoreflectance study of Cu2SnS3 thin films produced by pulsed laser deposition

    Get PDF
    The energy band structure of Cu2SnS3 (CTS) thin films fabricated by pulsed laser deposition was studied by photoreflectance spectroscopy (PR). The temperature-dependent PR spectra were measured in the range of T = 10–150 K. According to the Raman scattering analysis, the monoclinic crystal structure (C1c1) prevails in the studied CTS thin film; however, a weak contribution from cubic CTS (F-43m) was also detected. The PR spectra revealed the valence band splitting of CTS. Optical transitions at EA = 0.92 eV, EB = 1.04 eV, and EC = 1.08 eV were found for monoclinic CTS at low-temperature (T = 10 K). Additional optical transition was detected at EAC = 0.94 eV, and it was attributed to the low-temperature band gap of cubic CTS. All the identified optical transition energies showed a blueshift with increasing temperature, and the temperature coefficient dE/dT was about 0.1 meV/K

    Optical spectroscopy studies of Cu2ZnSnSe4 thin films

    Get PDF
    Cu2ZnSnSe4 thin films were synthesised by selenisation of magnetron sputtered metal precursors. The band gap determined from the absorption spectra increases from 1.01 eV at 300 K to 1.05 eV at 4.2 K. In lower quality films photoluminescence spectra show a broad, low intensity asymmetric band associated with a recombination of free electrons and holes localised on acceptors in the presence of spatial potential fluctuations. In high quality material the luminescence band becomes intense and narrow resolving two phonon replicas. Its shifts at changing excitation power suggest donor–acceptor pair recombination mechanisms. The proposed model involving two pairs of donors and acceptors is supported by the evolution of the band intensity and spectral position with temperature. Energy levels of the donors and acceptors are estimated using Arrhenius quenching analysis

    A luminescence study of Cu2ZnSnSe4/Mo/glass films and solar cells with near stoichiometric copper content

    Get PDF
    Cu2ZnSnSe4 (CZTSe) is one of the leading candidates for the absorber layer in sustainable solar cells. Thin films of CZTSe with a near stoichiometric [Cu]/[Zn  +  Sn] were used to produce solar cells with conversion efficiency η  =  6.4% by a standard solar cell processing including KCN etching and the deposition of CdS and ZnO. Both CZTSe films and solar cells were examined using photoluminescence (PL) to analyse the nature of radiative recombination and photoluminescence excitation (PLE) at 4.2 K to determine the bandgap (E g ). Low temperature PL spectra of the films reveal an intense band P1 at 0.81 eV and a low intensity band P2 at 0.93 eV. Their temperature and excitation intensity dependencies suggest that they both involve recombinations of free electrons with holes localised at acceptors with the energy level influenced by potential fluctuations in the valence band. We associate P1 and P2 with different fractions of CZTSe: with a lower and higher degree of order of Cu and Zn on the cation sub-lattice, respectively. Device processing reduced the intensity of P1 by 2.5 whereas the intensity of P2 increased by a 1.5. We assign this to a low temperature annealing due to CdS and ZnO deposition which increased the fraction of CZTSe with high degree of Cu/Zn order and decreased the fraction with low degree of Cu/Zn order. Device processing increased E g , blue shifted P1, decreased its width, j-shift and the mean depth of potential fluctuations. These can also be related to the annealing and/or KCN etching and the chemical effect of Cd, due to CdS replacing copper at the CdS-CZTSe interface layer. Processing induced a new broad band P3 at 1.3 eV (quenching with E a = 200 meV) which we attributed to defects in the CdS layer

    Effects of Ar+ etching of Cu2ZnSnSe4 thin films: An x-ray photoelectron spectroscopy and photoluminescence study

    Get PDF
    Cu2ZnSnSe4 (CZTSe) is a semiconductor used as the absorber layer in highly promising sustainable thin film solar cells. The authors study the effect of Ar+ etching of copper deficient and zinc excess CZTSe thin films deposited on Mo/glass substrates on the surface elemental composition, measured by x-ray photoelectron spectroscopy, and photoluminescence (PL) spectra. Low temperature PL spectra reveal a broad asymmetrical band at 0.95 eV. The temperature and excitation intensity dependencies of this band suggest that it is a free-to-bound (FB) recombination of electrons from the conduction band with holes localized at an acceptor affected by potential fluctuations. The surface composition of the as grown films demonstrates a strong copper deficiency: [Cu]/[Zn + Sn] = 0.33. The etching of the film surface using Ar+ beam increases [Cu]/[Zn + Sn] to 0.51, which is significantly smaller than that of 0.78 in the bulk, measured by wavelength dispersive x-ray analysis, demonstrating the presence on the surface of a copper-depleted layer. The Ar+ etching drastically reduces the FB band intensity by a factor of 4.5, broadens it and develops a low energy tail. Ar ions displace atoms in CZTSe lattice creating primary radiation defects, vacancies, and interstitials, which recombine at room temperature forming antisite defects with deep energy levels. Some of them generate the observed low energy tail and increase the mean depth of potential fluctuation γ, determined from the shape of the low energy side of FB band, from 24 meV before Ar+ etching to 35 meV after. Other deep defects work as nonradiative recombination centers reducing the intensity of the FB band
    corecore