363 research outputs found

    Shell Corrections for Finite-Depth Deformed Potentials: Green's Function Oscillator Expansion Method

    Get PDF
    Shell corrections of the finite deformed Woods-Saxon potential are calculated using the Green's function method and the generalized Strutinsky smoothing procedure. They are compared with the results of the standard prescription which are affected by the spurious contribution from the unphysical particle gas. In the new method, the shell correction approaches the exact limit provided that the dimension of the single-particle (harmonic oscillator) basis is sufficiently large. For spherical potentials, the present method is faster than the exact one in which the contribution from the particle continuum states is explicitly calculated. For deformed potentials, the Green's function method offers a practical and reliable way of calculating shell corrections for weakly bound nuclei.Comment: submitted to Phys. Rev. C, 12 pages, 7 figure

    Particle-unstable nuclei in the Hartree-Fock theory

    Get PDF
    Ground state energies and decay widths of particle unstable nuclei are calculated within the Hartree-Fock approximation by performing a complex scaling of the many-body Hamiltonian. Through this transformation, the wave functions of the resonant states become square integrable. The method is implemented with Skyrme effective interactions. Several Skyrme parametrizations are tested on four unstable nuclei: 10He, 12O, 26O and 28O.Comment: 5 pages, LaTeX, submitted to Phys. Rev. Let

    A pp-adic RanSaC algorithm for stereo vision using Hensel lifting

    Full text link
    A pp-adic variation of the Ran(dom) Sa(mple) C(onsensus) method for solving the relative pose problem in stereo vision is developped. From two 2-adically encoded images a random sample of five pairs of corresponding points is taken, and the equations for the essential matrix are solved by lifting solutions modulo 2 to the 2-adic integers. A recently devised pp-adic hierarchical classification algorithm imitating the known LBG quantisation method classifies the solutions for all the samples after having determined the number of clusters using the known intra-inter validity of clusterings. In the successful case, a cluster ranking will determine the cluster containing a 2-adic approximation to the "true" solution of the problem.Comment: 15 pages; typos removed, abstract changed, computation error remove

    Localization of shadow poles by complex scaling

    Full text link
    Through numerical examples we show that the complex scaling method is suited to explore the pole structure in multichannel scattering problems. All poles lying on the multisheeted Riemann energy surface, including shadow poles, can be revealed and the Riemann sheets on which they reside can be identified.Comment: 6 pages, Latex with Revtex, 3 figures (not included) available on reques

    Theoretical description of deformed proton emitters: nonadiabatic coupled-channel method

    Get PDF
    The newly developed nonadiabatic method based on the coupled-channel Schroedinger equation with Gamow states is used to study the phenomenon of proton radioactivity. The new method, adopting the weak coupling regime of the particle-plus-rotor model, allows for the inclusion of excitations in the daughter nucleus. This can lead to rather different predictions for lifetimes and branching ratios as compared to the standard adiabatic approximation corresponding to the strong coupling scheme. Calculations are performed for several experimentally seen, non-spherical nuclei beyond the proton dripline. By comparing theory and experiment, we are able to characterize the angular momentum content of the observed narrow resonance.Comment: 12 pages including 10 figure

    On the Invariant Theory of Weingarten Surfaces in Euclidean Space

    Full text link
    We prove that any strongly regular Weingarten surface in Euclidean space carries locally geometric principal parameters. The basic theorem states that any strongly regular Weingarten surface is determined up to a motion by its structural functions and the normal curvature function satisfying a geometric differential equation. We apply these results to the special Weingarten surfaces: minimal surfaces, surfaces of constant mean curvature and surfaces of constant Gauss curvature.Comment: 16 page

    Tecnologia social: uma estratégia para o desenvolvimento

    Get PDF
    Esta publicação apresenta reflexões de diversos representantes de instituições governamentais, do terceiro setor, da sociedade civil e de universidades sobre o tema da Tecnologia Social

    Continued fraction representation of the Coulomb Green's operator and unified description of bound, resonant and scattering states

    Full text link
    If a quantum mechanical Hamiltonian has an infinite symmetric tridiagonal (Jacobi) matrix form in some discrete Hilbert-space basis representation, then its Green's operator can be constructed in terms of a continued fraction. As an illustrative example we discuss the Coulomb Green's operator in Coulomb-Sturmian basis representation. Based on this representation, a quantum mechanical approximation method for solving Lippmann-Schwinger integral equations can be established, which is equally applicable for bound-, resonant- and scattering-state problems with free and Coulombic asymptotics as well. The performance of this technique is illustrated with a detailed investigation of a nuclear potential describing the interaction of two α\alpha particles.Comment: 7 pages, 4 ps figures, revised versio

    Myosin VI-Dependent Actin Cages Encapsulate Parkin-Positive Damaged Mitochondria.

    Get PDF
    Mitochondrial quality control is essential to maintain cellular homeostasis and is achieved by removing damaged, ubiquitinated mitochondria via Parkin-mediated mitophagy. Here, we demonstrate that MYO6 (myosin VI), a unique myosin that moves toward the minus end of actin filaments, forms a complex with Parkin and is selectively recruited to damaged mitochondria via its ubiquitin-binding domain. This myosin motor initiates the assembly of F-actin cages to encapsulate damaged mitochondria by forming a physical barrier that prevents refusion with neighboring populations. Loss of MYO6 results in an accumulation of mitophagosomes and an increase in mitochondrial mass. In addition, we observe downstream mitochondrial dysfunction manifesting as reduced respiratory capacity and decreased ability to rely on oxidative phosphorylation for energy production. Our work uncovers a crucial step in mitochondrial quality control: the formation of MYO6-dependent actin cages that ensure isolation of damaged mitochondria from the network

    Role of dynamical particle-vibration coupling in reconciliation of the d3/2d_{3/2} puzzle for spherical proton emitters

    Get PDF
    It has been observed that decay rate for proton emission from d3/2d_{3/2} single particle state is systematically quenched compared with the prediction of a one dimensional potential model although the same model successfully accounts for measured decay rates from s1/2s_{1/2} and h11/2h_{11/2} states. We reconcile this discrepancy by solving coupled-channels equations, taking into account couplings between the proton motion and vibrational excitations of a daughter nucleus. We apply the formalism to proton emitting nuclei 160,161^{160,161}Re to show that there is a certain range of parameter set of the excitation energy and the dynamical deformation parameter for the quadrupole phonon excitation which reproduces simultaneously the experimental decay rates from the 2d3/2d_{3/2}, 3s1/2s_{1/2} and 1h11/2h_{11/2} states in these nuclei.Comment: RevTex, 12 pages, 4 eps figure
    corecore