60 research outputs found
Phase Synchronization in Railway Timetables
Timetable construction belongs to the most important optimization problems in
public transport. Finding optimal or near-optimal timetables under the
subsidiary conditions of minimizing travel times and other criteria is a
targeted contribution to the functioning of public transport. In addition to
efficiency (given, e.g., by minimal average travel times), a significant
feature of a timetable is its robustness against delay propagation. Here we
study the balance of efficiency and robustness in long-distance railway
timetables (in particular the current long-distance railway timetable in
Germany) from the perspective of synchronization, exploiting the fact that a
major part of the trains run nearly periodically. We find that synchronization
is highest at intermediate-sized stations. We argue that this synchronization
perspective opens a new avenue towards an understanding of railway timetables
by representing them as spatio-temporal phase patterns. Robustness and
efficiency can then be viewed as properties of this phase pattern
ResearchFlow: Understanding the Knowledge Flow between Academia and Industry
Understanding, monitoring, and predicting the flow of knowledge between academia and industry is of critical importance for a variety of stakeholders, including governments, funding bodies, researchers, investors, and companies. To this purpose, we introduce ResearchFlow, an approach that integrates semantic technologies and machine learning to quantifying the diachronic behaviour of research topics across academia and industry. ResearchFlow exploits the novel Academia/Industry DynAmics (AIDA) Knowledge Graph in order to characterize each topic according to the frequency in time of the related i) publications from academia, ii) publications from industry, iii) patents from academia, and iv) patents from industry. This representation is then used to produce several analytics regarding the academia/industry knowledge flow and to forecast the impact of research topics on industry. We applied ResearchFlow to a dataset of 3.5M papers and 2M patents in Computer Science and highlighted several interesting patterns. We found that 89.8% of the topics first emerge in academic publications, which typically precede industrial publications by about 5.6 years and industrial patents by about 6.6 years. However this does not mean that academia always dictates the research agenda. In fact, our analysis also shows that industrial trends tend to influence academia more than academic trends affect industry. We evaluated ResearchFlow on the task of forecasting the impact of research topics on the industrial sector and found that its granular characterization of topics improves significantly the performance with respect to alternative solutions
Television pictures of Phobos: first results
In February-March 1989, 37 television images of the Martian satellite Phobos were obtained by the Phobos 2 spacecraft from distances of 200-1100 km. These images provide an important supplement to the TV data from the American Mariner 9 and Viking spacecraft in coverage of t4e surface of Phobos and in resolution in certain regions, in spectral range, and in range of phase angles. They make it possible to refine the figure and topographic and geological maps of the surface of Phobos, its spectral and angular reflective characteristics,
the surface composition and texture, and characteristics of the orbital and librational motion
- …