2,608 research outputs found

    COMPUTER AIDED DESIGN OF EXPERIMENTS

    Get PDF

    Escalation of error catastrophe for enzymatic self-replicators

    Get PDF
    It is a long-standing question in origin-of-life research whether the information content of replicating molecules can be maintained in the presence of replication errors. Extending standard quasispecies models of non-enzymatic replication, we analyze highly specific enzymatic self-replication mediated through an otherwise neutral recognition region, which leads to frequency-dependent replication rates. We find a significant reduction of the maximally tolerable error rate, because the replication rate of the fittest molecules decreases with the fraction of functional enzymes. Our analysis is extended to hypercyclic couplings as an example for catalytic networks.Comment: 6 pages, 4 figures; accepted at Europhys. Let

    Driven Lattice Gases with Quenched Disorder: Exact Results and Different Macroscopic Regimes

    Full text link
    We study the effect of quenched spatial disorder on the steady states of driven systems of interacting particles. Two sorts of models are studied: disordered drop-push processes and their generalizations, and the disordered asymmetric simple exclusion process. We write down the exact steady-state measure, and consequently a number of physical quantities explicitly, for the drop-push dynamics in any dimensions for arbitrary disorder. We find that three qualitatively different regimes of behaviour are possible in 1-dd disordered driven systems. In the Vanishing-Current regime, the steady-state current approaches zero in the thermodynamic limit. A system with a non-zero current can either be in the Homogeneous regime, chracterized by a single macroscopic density, or the Segregated-Density regime, with macroscopic regions of different densities. We comment on certain important constraints to be taken care of in any field theory of disordered systems.Comment: RevTex, 17pages, 18 figures included using psfig.st

    Correlations of record events as a test for heavy-tailed distributions

    Full text link
    A record is an entry in a time series that is larger or smaller than all previous entries. If the time series consists of independent, identically distributed random variables with a superimposed linear trend, record events are positively (negatively) correlated when the tail of the distribution is heavier (lighter) than exponential. Here we use these correlations to detect heavy-tailed behavior in small sets of independent random variables. The method consists of converting random subsets of the data into time series with a tunable linear drift and computing the resulting record correlations.Comment: Revised version, to appear in Physical Review Letter

    Kinetic roughening of surfaces: Derivation, solution and application of linear growth equations

    Full text link
    We present a comprehensive analysis of a linear growth model, which combines the characteristic features of the Edwards--Wilkinson and noisy Mullins equations. This model can be derived from microscopics and it describes the relaxation and growth of surfaces under conditions where the nonlinearities can be neglected. We calculate in detail the surface width and various correlation functions characterizing the model. In particular, we study the crossover scaling of these functions between the two limits described by the combined equation. Also, we study the effect of colored and conserved noise on the growth exponents, and the effect of different initial conditions. The contribution of a rough substrate to the surface width is shown to decay universally as wi(0)(ξs/ξ(t))d/2w_i(0) (\xi_s/\xi(t))^{d/2}, where ξ(t)∼t1/z\xi(t) \sim t^{1/z} is the time--dependent correlation length associated with the growth process, wi(0)w_i(0) is the initial roughness and ξs\xi_s the correlation length of the substrate roughness, and dd is the surface dimensionality. As a second application, we compute the large distance asymptotics of the height correlation function and show that it differs qualitatively from the functional forms commonly used in the intepretation of scattering experiments.Comment: 28 pages with 4 PostScript figures, uses titlepage.sty; to appear in Phys. Rev.

    Evolutionary trajectories in rugged fitness landscapes

    Full text link
    We consider the evolutionary trajectories traced out by an infinite population undergoing mutation-selection dynamics in static, uncorrelated random fitness landscapes. Starting from the population that consists of a single genotype, the most populated genotype \textit{jumps} from a local fitness maximum to another and eventually reaches the global maximum. We use a strong selection limit, which reduces the dynamics beyond the first time step to the competition between independent mutant subpopulations, to study the dynamics of this model and of a simpler one-dimensional model which ignores the geometry of the sequence space. We find that the fit genotypes that appear along a trajectory are a subset of suitably defined fitness \textit{records}, and exploit several results from the record theory for non-identically distributed random variables. The genotypes that contribute to the trajectory are those records that are not \textit{bypassed} by superior records arising further away from the initial population. Several conjectures concerning the statistics of bypassing are extracted from numerical simulations. In particular, for the one-dimensional model, we propose a simple relation between the bypassing probability and the dynamic exponent which describes the scaling of the typical evolution time with genome size. The latter can be determined exactly in terms of the extremal properties of the fitness distribution.Comment: Figures in color; minor revisions in tex

    Coarsening of Sand Ripples in Mass Transfer Models with Extinction

    Full text link
    Coarsening of sand ripples is studied in a one-dimensional stochastic model, where neighboring ripples exchange mass with algebraic rates, Γ(m)∼mγ\Gamma(m) \sim m^\gamma, and ripples of zero mass are removed from the system. For γ<0\gamma < 0 ripples vanish through rare fluctuations and the average ripples mass grows as \avem(t) \sim -\gamma^{-1} \ln (t). Temporal correlations decay as t−1/2t^{-1/2} or t−2/3t^{-2/3} depending on the symmetry of the mass transfer, and asymptotically the system is characterized by a product measure. The stationary ripple mass distribution is obtained exactly. For γ>0\gamma > 0 ripple evolution is linearly unstable, and the noise in the dynamics is irrelevant. For γ=1\gamma = 1 the problem is solved on the mean field level, but the mean-field theory does not adequately describe the full behavior of the coarsening. In particular, it fails to account for the numerically observed universality with respect to the initial ripple size distribution. The results are not restricted to sand ripple evolution since the model can be mapped to zero range processes, urn models, exclusion processes, and cluster-cluster aggregation.Comment: 10 pages, 8 figures, RevTeX4, submitted to Phys. Rev.

    Influence of adatom interactions on second layer nucleation

    Full text link
    We develop a theory for the inclusion of adatom interactions in second layer nucleation occurring in epitaxial growth. The interactions considered are due to ring barriers between pairs of adatoms and binding energies of unstable clusters. The theory is based on a master equation, which describes the time development of microscopic states that are specified by cluster configurations on top of an island. The transition rates are derived by scaling arguments and tested against kinetic Monte-Carlo simulations. As an application we reanalyze experiments to determine the step edge barrier for Ag/Pt(111).Comment: 4 pages, 4 figure

    The process of irreversible nucleation in multilayer growth. II. Exact results in one and two dimensions

    Full text link
    We study irreversible dimer nucleation on top of terraces during epitaxial growth in one and two dimensions, for all values of the step-edge barrier. The problem is solved exactly by transforming it into a first passage problem for a random walker in a higher-dimensional space. The spatial distribution of nucleation events is shown to differ markedly from the mean-field estimate except in the limit of very weak step-edge barriers. The nucleation rate is computed exactly, including numerical prefactors.Comment: 22 pages, 10 figures. To appear in Phys. Rev.

    Strong-coupling behaviour in discrete Kardar-Parisi-Zhang equations

    Full text link
    We present a systematic discretization scheme for the Kardar-Parisi-Zhang (KPZ) equation, which correctly captures the strong-coupling properties of the continuum model. In particular we show that the scheme contains no finite-time singularities in contrast to conventional schemes. The implications of these results to i) previous numerical integration of the KPZ equation, and ii) the non-trivial diversity of universality classes for discrete models of `KPZ-type' are examined. The new scheme makes the strong-coupling physics of the KPZ equation more transparent than the original continuum version and allows the possibility of building new continuum models which may be easier to analyse in the strong-coupling regime.Comment: 21 pages, revtex, 2 figures, submitted to J. Phys.
    • …
    corecore