430 research outputs found
Scarring of Florida’s seagrasses: assessment and management options
Management programs that address scarring
of seagrasses should be based on an approach that
involves (1) education, (2) channel marking,
(3) increased enforcement, and (4) limited-motoring
zones. Aerial monitoring and photography of
the managed area are essential in evaluating the
effectiveness of a program. Management programs
that use this multifaceted approach have been
instituted by a few local governments and at several
state parks. Initial results of the programs
indicate that in some areas seagrass scarring has
been reduced but that in other areas emphasis may
need to be increased on one or more of the components
of the four-point approach. A statewide
management plan is needed to address the most
egregious scarring over large areas that may be
difficult to regulate at the local-government level
Wigner-Moyal description of free variable mass Klein-Gordon fields
A system of coupled kinetic transport equations for the Wigner distributions
of a free variable mass Klein-Gordon field is derived. This set of equations is
formally equivalent to the full wave equation for electromagnetic waves in
nonlinear dispersive media, thus allowing for the description of broadband
radiation-matter interactions and the associated instabilities. The standard
results for the classical wave action are recovered in the short wavelength
limit of the generalized Wigner-Moyal formalism for the wave equation.Comment: 9 pages, accepted for publication in Journal of Mathematical Physic
Kinetic-Ion Simulations Addressing Whether Ion Trapping Inflates Stimulated Brillouin Backscattering Reflectivities
An investigation of the possible inflation of stimulated Brillouin
backscattering (SBS) due to ion kinetic effects is presented using
electromagnetic particle simulations and integrations of three-wave
coupled-mode equations with linear and nonlinear models of the nonlinear ion
physics. Electrostatic simulations of linear ion Landau damping in an ion
acoustic wave, nonlinear reduction of damping due to ion trapping, and
nonlinear frequency shifts due to ion trapping establish a baseline for
modeling the electromagnetic SBS simulations. Systematic scans of the laser
intensity have been undertaken with both one-dimensional particle simulations
and coupled-mode-equations integrations, and two values of the electron-to-ion
temperature ratio (to vary the linear ion Landau damping) are considered. Three
of the four intensity scans have evidence of SBS inflation as determined by
observing more reflectivity in the particle simulations than in the
corresponding three-wave mode-coupling integrations with a linear ion-wave
model, and the particle simulations show evidence of ion trapping.Comment: 56 pages, 20 figure
Spin contribution to the ponderomotive force in a plasma
The concept of a ponderomotive force due to the intrinsic spin of electrons
is developed. An expression containing both the classical as well as the
spin-induced ponderomotive force is derived. The results are used to
demonstrate that an electromagnetic pulse can induce a spin-polarized plasma.
Furthermore, it is shown that for certain parameters, the nonlinear
back-reaction on the electromagnetic pulse from the spin magnetization current
can be larger than that from the classical free current. Suitable parameter
values for a direct test of this effect are presented.Comment: 4 pages, 2 figures, version accepted for publication in Physical
Review Letter
Plasma density measurements using chirped pulse broad-band Raman amplification
Stimulated Raman backscattering is used as a non-destructive method to determine the density of plasma media at localized positions in space and time. By colliding two counter-propagating, ultra-short laser pulses with a spectral bandwidth larger than twice the plasma frequency, amplification occurs at the Stokes wavelengths, which results in regions of gain and loss separated by twice the plasma frequency, from which the plasma density can be deduced. By varying the relative delay between the laser pulses, and therefore the position and timing of the interaction, the spatio-temporal distribution of the plasma density can be mapped out
Kinetic Enhancement of Raman Backscatter, and Electron Acoustic Thomson Scatter
1-D Eulerian Vlasov-Maxwell simulations are presented which show kinetic
enhancement of stimulated Raman backscatter (SRBS) due to electron trapping in
regimes of heavy linear Landau damping. The conventional Raman Langmuir wave is
transformed into a set of beam acoustic modes [L. Yin et al., Phys. Rev. E 73,
025401 (2006)]. For the first time, a low phase velocity electron acoustic wave
(EAW) is seen developing from the self-consistent Raman physics. Backscatter of
the pump laser off the EAW fluctuations is reported and referred to as electron
acoustic Thomson scatter. This light is similar in wavelength to, although much
lower in amplitude than, the reflected light between the pump and SRBS
wavelengths observed in single hot spot experiments, and previously interpreted
as stimulated electron acoustic scatter [D. S. Montgomery et al., Phys. Rev.
Lett. 87, 155001 (2001)]. The EAW is strongest well below the phase-matched
frequency for electron acoustic scatter, and therefore the EAW is not produced
by it. The beating of different beam acoustic modes is proposed as the EAW
excitation mechanism, and is called beam acoustic decay. Supporting evidence
for this process, including bispectral analysis, is presented. The linear
electrostatic modes, found by projecting the numerical distribution function
onto a Gauss-Hermite basis, include beam acoustic modes (some of which are
unstable even without parametric coupling to light waves) and a strongly-damped
EAW similar to the observed one. This linear EAW results from non-Maxwellian
features in the electron distribution, rather than nonlinearity due to electron
trapping.Comment: 15 pages, 16 figures, accepted in Physics of Plasmas (2006
Energy exchange during stimulated Raman scattering of a relativistic laser in a plasma
Energy exchange between pump and daughter waves during the stimulated Raman scattering process in a plasma is investigated, including the effect of a damping coefficient of electron-ion collision at different initial three-wave phases. To obey the energy and momentum conservations, the resonance conditions are satisfied at an optimal initial phase difference between the interacting waves. The amplitudes of the interacting waves exhibit behaviors such as a parametric oscillator. The variations in initial three-wave phase difference generate a phase mismatch, which enhances the rate of the amplitude variations of the interacting waves. The relativistic mass effect modifies the dispersion relations of the interacting waves, and consequently the energy exchange during the stimulated Raman scattering is affected. The collisional damping in the plasma is shown to have an important effect on the evolution of the interacting waves.open91
Absorption of Ultrashort Laser Pulses in Strongly Overdense Targets
We report on the first absorption experiments of sub-10 fs high-contrast
Ti:Sa laser pulses incident on solid targets. The very good contrast of the
laser pulse assures the formation of a very small pre-plasma and the pulse
interacts with the matter close to solid density. Experimental results indicate
that p-polarized laser pulses are absorbed up to 80 percent at 80 degrees
incidence angle. The simulation results of PSC PIC code clearly confirm the
observations and show that the collisionless absorption works efficiently in
steep density profiles
Interaction of intense vuv radiation with large xenon clusters
The interaction of atomic clusters with short, intense pulses of laser light
to form extremely hot, dense plasmas has attracted extensive experimental and
theoretical interest. The high density of atoms within the cluster greatly
enhances the atom--laser interaction, while the finite size of the cluster
prevents energy from escaping the interaction region. Recent technological
advances have allowed experiments to probe the laser--cluster interaction at
very high photon energies, with interactions much stronger than suggested by
theories for lower photon energies. We present a model of the laser--cluster
interaction which uses non-perturbative R-matrix techniques to calculate
inverse bremsstrahlung and photoionization cross sections for Herman-Skillman
atomic potentials. We describe the evolution of the cluster under the influence
of the processes of inverse bremsstrahlung heating, photoionization,
collisional ionization and recombination, and expansion of the cluster. We
compare charge state distribution, charge state ejection energies, and total
energy absorbed with the Hamburg experiment of Wabnitz {\em et al.} [Nature
{\bf 420}, 482 (2002)] and ejected electron spectra with Laarmann {\em et al.}
[Phys. Rev. Lett. {\bf 95}, 063402 (2005)]
Mapping giant magnetic fields around dense solid plasmas by high resolution magneto-optical microscopy
We investigate distribution of magnetic fields around dense solid plasmas
generated by intense p-polarized laser (~10^{16} W.cm^{-2}, 100 fs) irradiation
of magnetic tapes, using high sensitivity magneto optical microscopy. We
present evidence for giant axial magnetic fields and map out for the first time
the spatial distribution of these fields. By using the axial magnetic field
distribution as a diagnostic tool we uncover evidence for angular momentum
associated with the plasma. We believe this study holds significance for
investigating the process under which a magnetic material magnetizes or
demagnetizes under the influence of ultrashort intense laser pulses.Comment: 17 pages of text with 4 figure
- …